
An Exhaustive Covering Approach to
Parameter-free Mining of Non-redundant

Discriminative Itemsets

Yoshitaka Kameya

Dept. of Information Engineering, Meijo University
1-501 Shiogama-guchi, Tenpaku-ku, Nagoya 468-8502, Japan

ykameya@meijo-u.ac.jp

Abstract. Discriminative pattern mining is a promising extension of
frequent pattern mining. This paper proposes an algorithm called Ex-
Cover, a shorthand for exhaustive covering, for finding non-redundant
discriminative itemsets. ExCover outputs non-redundant patterns where
each pattern covers best at least one positive transaction. With no con-
trol parameters limiting the search space, ExCover efficiently performs
an exhaustive search for best-covering patterns using branch-and-bound
pruning. During the search, candidate best-covering patterns are con-
currently collected for each positive transaction. Formal discussions and
experimental results exhibit that ExCover efficiently finds a more com-
pact set of patterns in comparison with previous methods.

Keywords: discriminative patterns, sequential covering, branch-and-
bound search

1 Introduction

Discriminative pattern mining is a promising extension of frequent pattern min-
ing, which has been studied under several different names [6, 15]. In a typical
setting of discriminative pattern mining, each transaction belongs to one of two
or more pre-defined classes, and we are interested in a particular class c. For
example, we may be studying mushrooms which are edible. Then, we attempt
to find discriminative patterns that frequently occur in the transactions of class
c (called positive transactions) and do not frequently occur in the transactions
not of class c (called negative transactions). The patterns found are expected to
characterize well c, the class of interest.

A main difficulty of discriminative pattern mining is that the quality score
for a pattern is not anti-monotonic w.r.t. set-inclusion, and thus we cannot en-
joy powerful pruning like the one with the minimum support threshold. In the
literature, several authors have conducted branch-and-bound search (e.g. [19]).
Another difficulty is redundancy among patterns. For example, if a pattern {A}
has significantly high quality in characterizing a class c of interest, patterns in-
cluding A, such as {A,B}, {A,C} and {A,B,C}, also tend to have high quality.

2 Yoshitaka Kameya

One remedy against redundancy is to use set-inclusion-based constraints among
patterns. For example, closed pattern mining techniques [20, 24] have also been
exploited in discriminative pattern mining [8, 22]. In the studies on subgroup
discovery, the notion of irrelevant patterns has been introduced [8]. It is known
that the productivity constraint [2] is efficiently tested in the search over suffix
enumeration trees [1, 14, 16].

In this paper, we propose an algorithm called ExCover, which is a short-
hand for exhaustive covering. ExCover outputs non-redundant patterns where
each pattern x covers best at least one positive transaction t, namely, x is of
the highest quality among the patterns that cover t. Hereafter we call this con-
straint the best-covering constraint. ExCover efficiently performs an exhaustive,
depth-first search for best-covering patterns using branch-and-bound pruning
techniques developed so far. During the search, candidate best-covering patterns
are concurrently collected for each positive transaction.

The merit of ExCover is three-fold. First, ExCover outputs patterns that
are non-redundant from the viewpoint of coverage over positive transactions. In
previous work, HARMONY [25] employs the same strategy, and surely covering
all positive transactions is counted as an advantage in its original paper. In fact,
however, the best-covering constraint also works for removing redundancy — a
formal result presented in this paper is that the best-covering constraint is tighter
than productivity, the aforementioned constraint ensuring non-redundancy. The
second merit of ExCover is that it finds patterns in an exhaustive manner. In
practice, we occasionally use rule learners for knowledge discovery, rather than
for black-box classification. Unfortunately, however, most of traditional learners
rely on greedy search and some heuristics [7, 26], and consequently, for some
generated rules, the reason why such rules have been generated may not be clear
to non-experts. We believe that the exhaustiveness of ExCover would enhance
the explainability of the obtained results. Lastly, ExCover has no control pa-
rameters required to be tuned for limiting the search space. In frequent pattern
mining, it is often said to be tedious or infeasible to tune the minimum support
threshold for having a manageable amount of useful patterns. To alleviate this
inconvenience, Han et al. [13] proposed a top-k mining method without tuning
minimum support. Here k, the number of patterns to be output, is more user-
centric than minimum support. ExCover follows this line of research and does
not even require k since it automatically stops the search when every positive
transaction has been covered best by some pattern already examined.

To illustrate, let us consider a dataset shown in Table 1 (1). There are five
positive transactions (belonging to class +) and five negative transactions (be-
longing to class −). Each transaction is associated with an identifier called TID.
From this dataset, we attempt to find top-k discriminative patterns w.r.t. class
c = + with k = 20 and obtain the patterns in Table 1 (2a). The quality of
each pattern in the first field is measured by the F-score recorded in the second
field. The third field contains the TIDs of positive transactions covered by the
pattern in the first field. Table 1 (2a) includes more than 20 patterns due to the
tie score at the bottom. For example, for class c = + and the top-ranked pattern

Exhaustive Covering for Non-redundant Discriminative Itemsets 3

Table 1. Example transactions (1), and discriminative patterns (2a)∼(2d) and (3).

(1)
TID Class Transaction
1 + {A,B,D,E}
2 + {A,B,C,D,E}
3 + {A,C,D,E}
4 + {A,B,C}
5 + {B}
6 − {A,B,D,E}
7 − {B,C,D,E}
8 − {C,D,E}
9 − {A,D,E}
10 − {A,D}

(2a) Top-k
Pattern F-score TIDs

{A,C} 0.750 2,3,4
{B} 0.727 1,2,4,5
{A} 0.667 1,2,3,4
{A,B} 0.667 1,2,4
{A,D,E} 0.600 1,2,3
{A,E} 0.600 1,2,3
{C} 0.600 2,3,4
{A,B,C} 0.571 2,4
{A,C,D} 0.571 2,3
{A,C,D,E} 0.571 2,3
{A,C,E} 0.571 2,3
{A,D} 0.545 1,2,3
{A,B,D} 0.500 1,2
{A,B,D,E} 0.500 1,2
{A,B,E} 0.500 1,2
{B,C} 0.500 2,4
{B,D} 0.444 1,2
{B,D,E} 0.444 1,2
{B,E} 0.444 1,2
{C,D} 0.444 2,3
{C,D,E} 0.444 2,3
{C,E} 0.444 2,3

(2b) Productive
Pattern F-score TIDs

{A,C} 0.750 2,3,4
{B} 0.727 1,2,4,5
{A} 0.667 1,2,3,4
{C} 0.600 2,3,4

(2c) Closed
Pattern F-score TIDs

{A,C} 0.750 2,3,4
{B} 0.727 1,2,4,5
{A} 0.667 1,2,3,4
{A,B} 0.667 1,2,4
{A,D,E} 0.600 1,2,3
{A,B,C} 0.571 2,4
{A,C,D,E} 0.571 2,3
{A,B,D,E} 0.500 1,2
{A,B,C,D,E} 0.333 2

(2d) Productive & Closed
Pattern F-score TIDs

{A,C} 0.750 2,3,4
{B} 0.727 1,2,4,5
{A} 0.667 1,2,3,4

(3) Best-covering (ExCover)
Pattern F-score TIDs

{A,C} 0.750 2,3,4
{B} 0.727 1,2,4,5

x = {A,C}, we have its (positive) support p(x | c) = 0.6 since three out of five
positive transactions are covered by {A,C}. Similarly, we have x’s confidence
p(c | x) = 1 since all transactions covered by {A,C} belong to class +. The
F-score of {A,C} is then obtained as the harmonic mean of support p(x | c) and
confidence p(c | x) which amounts to 2× 0.6× 1/(0.6 + 1) = 0.75. Remark here
that the patterns in Table 1 (2a) have been obtained under no constraint except
the top-k constraint, and more patterns would be output with a larger k.

In contrast, the patterns in Table 1 (2b)∼(2d) are obtained under some ad-
ditional, set-inclusion-based constraints. Specifically, Table 1 (2b) only contains
productive patterns, i.e. the patterns having no improvement in quality from
their sub-patterns are excluded. For example, the patterns in Table 1 (2a) con-
taining item B together with some other items are all excluded in Table 1 (2b),
since their F-scores are lower than the F-score of pattern {B}. On the other
hand, Table 1 (2c) contains the patterns closed on the positive transactions.
One may find that the patterns in Table 1 (2a) that cover the same positive
transactions are replaced with the largest pattern listed in Table 1 (2c). For

4 Yoshitaka Kameya

example, patterns {A,D}, {A,E} and {A,D,E} in Table 1 (2a) cover the same
positive transactions 1, 2 and 3, whereas Table 1 (2c) only contains the largest
one {A,D,E}. Choosing productive patterns from the closed patterns in Table 1
(2c) yields the patterns in Table 1 (2d). Note that, even with a larger k, no
other patterns will be output, and therefore additional constraints surely work
for reducing the number of patterns to be output.

Furthermore, we wish to have fewer patterns that are sufficient to characterize
the class of interest. Indeed, in the current example, ExCover only outputs two
patterns listed in Table 1 (3). Pattern {A} has been excluded here since each
of transaction 1, 2, 3 and 4 covered by {A} is also covered by other patterns
{A,C} and {B} of higher quality. We say that {A,C} covers best transactions
2, 3 and 4, and {B} covers best transactions 1 and 5. From the viewpoint of
coverage over positive transactions, in the current example, performing top-k
mining where k = 1 seems inappropriate, since we obviously lose the information
from transactions 1 and 5. Having that said, however, we are not able to know
it beforehand. So eliminating k in ExCover would reduce the user’s effort.

The rest of the paper is outlined as follows. First, Section 2 gives several back-
ground notions and notations related to ExCover. We then describe the details
of ExCover in Section 3. Section 4 presents some results of our experiments, and
Section 5 discusses some related work. Finally Section 6 concludes the paper.

2 Background

2.1 Preliminaries

This paper shares several background notions and notations with [14]. We first
consider a dataset D = {t1, t2, . . . , tN}, a multiset of sizeN , where ti (1 ≤ i ≤ N)
is a set of items called a transaction. Each transaction belongs to one of pre-
defined classes C, and let ci be the class of transaction ti. The set of all items
appearing in D is denoted by X . A pattern x is a subset of X . and we say that x
covers a transaction ti when x ⊆ ti. For convenience, we interchangeably denote
a pattern as a vector x = (x1, x2, . . . , xn), as a set x = {x1, x2, . . . , xn}, or as a
conjunction x = (x1 ∧ x2 ∧ . . . ∧ xn).

We then define some subsets of a dataset D: Dc = {ti | ci = c, 1 ≤ i ≤ N},
D(x) = {ti | x ⊆ ti, 1 ≤ i ≤ N} and Dc(x) = {ti | ci = c,x ⊆ ti, 1 ≤ i ≤ N},
where c ∈ C is the class of interest. We use a symbol ¬ for negation, e.g. D¬c =
D \ Dc, Dc(¬x) = Dc \ Dc(x) and D¬c(x) = D(x) \ Dc(x). The transactions in
Dc (resp. D¬c) are called positive (resp. negative) transactions.

The probabilities treated in this paper are all empirical, i.e. they are com-
puted from the dataset D. Specifically, a joint probability p(c,x) is obtained as
|Dc(x)|/N . Similarly we have p(c,¬x) = |Dc(¬x)|/N , p(¬c,x) = |D¬c(x)|/N ,
and so on. Using joint probabilities, marginal probabilities and conditional prob-
abilities are computed in a standard way, e.g. p(x) = p(c,x) + p(¬c,x), p(c) =
p(c,x) + p(c,¬x) or p(c | x) = p(c,x)/p(x). In the traditional terminology on
pattern mining, we often call conditional probabilities p(x | c), p(x | ¬c) and

Exhaustive Covering for Non-redundant Discriminative Itemsets 5

p(c | x) positive support, negative support and confidence, respectively. For
brevity, ‘support’ means positive support unless explicitly noted.

2.2 Dual-monotonicity

The quality of a pattern x for class c is written as Rc(x), and most of popular
quality functions are functions of positive support p(x | c) and negative support
p(x | ¬c) [14]. As an instance of Rc, throughout the paper, we use F-score
Fc(x) = 2p(c | x)p(x | c)/(p(c | x) + p(x | c)), which can be simplified as Dice
Index 2p(x, c)/(p(x) + p(c)). Also F-score gives the same ranking over patterns
as the one by Jaccard Index p(x, c)/(p(x) + p(c) − p(x, c)) for a given class c
of interest. Since we seek for the patterns characterizing a particular class c,
we focus on the patterns x such that p(x | c) ≥ p(x | ¬c) or equivalently
p(c | x) ≥ p(c).1 In the previous work, the convexity of quality scores has been
exploited in branch-and-bound pruning [19], and recently, a relaxed condition
called dual-monotonicity was introduced in [14]:

Definition 1. Let Rc be a quality score for a class c. Then, Rc is dual-monotonic
iff, for any pattern x, Rc(x) is monotonically increasing w.r.t. p(x | c) and
monotonically decreasing w.r.t. p(x | ¬c) wherever p(x | c) ≥ p(x | ¬c). ⊓⊔

ExCover works with any dual-monotonic quality score. Indeed, like the algorithm
proposed in [14], dual-monotonicity plays a crucial role in various aspects of
ExCover. Several well-known quality scores such as F-score, the Fisher score,
information gain, Gini index, χ2 and support difference are all dual-monotonic.

2.3 Branch-and-bound Pruning in Top-k Mining

Suppose that we are performing a branch-and-bound search for top-k patterns
under a dual-monotonic quality score Rc. Also consider an anti-monotonic upper
bound Rc(x) of Rc(x) of a pattern x. Then, if it is found that Rc(x) < Rc(z),
where z is the pattern with the k-th greatest score at the moment, we can
safely prune the subtree rooted by x in the enumeration tree. This pruning
exploits the anti-monotonicity of Rc w.r.t. pattern-inclusion, which guarantees
Rc(x

′) ≤ Rc(x
′) ≤ Rc(x) < Rc(z) for any super-pattern x′ of x. Rc(x) and

Rc(x) are computed from p(x | c) and p(x | ¬c), which in turn are computed
from the statistics stored in the (compressed) databases such as FP-trees.

The next question is how to obtain such an anti-monotonic upper bound.
Since Rc(x) is dual-monotonic, by definition Rc(x) is monotonically increasing
(resp. decreasing) w.r.t. p(x | c) (resp. p(x | ¬c)), and both p(x | c) and p(x | ¬c)
are anti-monotonic w.r.t. pattern-inclusion. Thus, the most optimistic scenario
when extending x into x′ is that p(x′ | c) remains p(x | c) and p(x′ | ¬c) turns
to be zero. One general way for obtaining an upper bound Rc(x) is then to

1 In the previous example with the target class c = +, a pattern x = {D} is excluded,
since p(x | c) = 3/5 = 0.6 and p(x | ¬c) = 5/5 = 1.

6 Yoshitaka Kameya

Item x p(x | +) p(x | −) F+(x)

A 0.8 0.6 0.667
B 0.8 0.4 0.727
C 0.6 0.4 0.600
D 0.6 1.0 0.462
E 0.6 0.8 0.500

{ A, E, D }{ A, C }{ A }{ B }

{ B, A } { B, A, C } { A, C, E, D }{ B, A, E, D }

{ B, A, C, E, D }

Fig. 1. F-scores of items (left) and the enumeration tree with SPC extension (right).

substitute p(x | ¬c) := 0 into the definition of Rc(x).
2 The upper bound Rc(x)

where p(x | ¬c) is constant at zero is always anti-monotonic w.r.t. pattern-
inclusion thanks to the dual-monotonicity ofRc. For example, the upper bound of
F-score is obtained as Fc(x) = 2p(x | c)/(1+p(x | c)). The operations described
here are applicable to any dual-monotonic quality score, but we should remark
that some quality score such as confidence p(c | x), its upper bound obtained by
the way above goes into infinity and pruning does not work in a practical sense.

2.4 The Closedness Constraint

As stated in the introduction, one popular technique for redundancy elimination
is to use the closedness constraint. For that, we first introduce a closure operator
Γ such that Γ (x,D) =

∩
t∈D(x) t, where D is the transactions and x is some

pattern. Here Γ (x,D) is called a closure of x w.r.t. D. A closed pattern is then
a pattern x such that x = Γ (x,D). Each closed pattern x is the largest pattern
in an equivalence class [x] = {x′ | D(x) = D(x′)} = {x′ | x = Γ (x′,D)} and
seen as a representative of [x]. Since the size of [x] can be exponential, focusing
only on closed patterns often leads to a significant reduction of the search space.

Closed patterns are also beneficial from the viewpoint of quality, especially
when the closure operator is applied only to the positive transactions Dc. Such
patterns are often said to be closed on the positives. Let c be a class of interest,
Dc be positive transaction, and x be some pattern. Also let x∗ = Γc(x), where
Γc(x) is an abbreviation of Γ (x,Dc). We further note that Dc(x

∗) = Dc(x) since
x∗ and x are in the same equivalence class [x], and D¬c(x

∗) ⊆ D¬c(x) since x∗

is the largest pattern in [x]. Then, under a dual-monotonic quality score Rc, we
have Rc(x

∗) ≥ Rc(x) since p(x∗ | c) = p(x | c) and p(x∗ | ¬c) ≤ p(x | ¬c) [8,
14, 22]. This means that the quality of a patterns closed on the positives is no
lower than the qualities of the patterns in the same equivalence class.

To enumerate patterns closed on the positives without duplicate visits to
a pattern, we perform a variant of prefix-preserving closure (PPC) extension
used in LCM [24], called suffix-preserving closure (SPC) extension [14]. Here we
will explain SPC extension by illustration. First, consider again the dataset in
Table 1 (1), where we have a total order B ≺ A ≺ C ≺ E ≺ D over items as the

2 Equivalent substitutions are also possible: p(c | x) := 1, p(¬x | ¬c) := 1, and so on.

Exhaustive Covering for Non-redundant Discriminative Itemsets 7

descending order of F-score in Fig. 1 (left). Here the quality Rc(x) of an item x
is defined as Rc({x}). Then, Fig. 1 (right) is the enumeration tree obtained by
exhaustive applications of SPC extension. In enumeration, we introduce a new
pattern by adding a core item to a pattern already visited. In Fig. 1 (right),
the core items are underlined, and among them, the core items lastly added are
doubly underlined. Other items, called accompanying items here, are those taken
along into a pattern by the closure operation. In SPC extension, a pattern having
no accompanying item which is a successor w.r.t. ≺ of the core item lastly added
are considered to preserve the suffix of the original pattern. Then, a pattern not
preserving the suffix is immediately pruned. At each branch in the enumeration
tree, the core items to be added are chosen from unadded predecessors of the
core item lastly added, in the ascending order w.r.t. ≺.

For example, given an empty pattern ∅, we apply an SPC extension by item D
to the positive transactions in Table 1 (1) and obtain Γc({D}∪∅) = {A,E,D}. In
this case, D is the last core item in {A,E,D}, while A and E are taken along into
the pattern by the closure operation. For a new pattern {A,E,D}, we further add
B and C which have not been added yet, following the ascending order w.r.t. ≺.
One may see that adding E into an empty pattern also yields the same pattern
Γc({E}∪∅) = {A,E,D}, where an accompanying item D is a successor of the core
item E lastly added. The pattern {A,E,D} obtained in this way is not suffix-
preserving and so is immediately pruned. We finally obtain the enumeration tree
in Fig. 1 (right) which has nine non-root nodes which correspond to the patterns
closed on the positives shown in Table 1 (2c).

In practice, the choice of the total order ≺ is important. Suppose we have
x ≺ x′ iff Rc(x) ≥ Rc(x

′) like the example above. Then, in a depth-first search,
we visit patterns including high quality items earlier, and hence there would be
more chances for pruning described in Sections 2.3 and 2.5.

2.5 The Productivity Constraint

We explain another constraint called productivity, whose original version is de-
fined with confidence [2]. This constraint has also been used in associative clas-
sification [17] and explanatory analysis of Bayesian networks [28]. Productivity
is defined as follows:

Definition 2. Let c be a class of interest. Then, for a pair of patterns x and x′,
x is weaker than x′ iff x ⊃ x′ and Rc(x) ≤ Rc(x

′). A pattern x is productive
iff x is not weaker than any sub-pattern of x. ⊓⊔

It is mentioned in [14] that, under a dual-monotonic quality score, the pro-
ductivity constraint above is tighter than the irrelevancy constraint [8, 10] among
the patterns closed on the positives. Also, it is desirable to test easily the pro-
ductivity constraint. In a depth-first search, the following property is useful [14]:

Proposition 1. When a pattern x is visited in a depth-first search with SPC
extension, all of x’s sub-patterns have already been visited. ⊓⊔

8 Yoshitaka Kameya

Algorithm 1 SeqCover
1: L := an empty set
2: while Dc ̸= ∅ do
3: Induce the best rule x ⇒ c from Dc and D¬c

4: L := L ∪ {x ⇒ c}
5: Remove all positive examples covered by x from Dc

6: end while
7: Output the rules in L

In Fig. 1 (right), {B,A,E,D} is visited after all its sub-patterns {B}, {A},
{B,A} and {A,E,D} being visited in a depth-first search with SPC extension.
So, when visiting {B,A,E,D}, we can easily compare the quality of {B,A,E,D}
with the qualities of {B}, {A}, {B,A} and {A,E,D} to test whether {B,A,E,D}
is productive. This is not the case with PPC extension in the original LCM.

Moreover, we are able to conduct an aggressive pruning based on an extended
notion of weakness which is defined as follows:

Definition 3. Let c be a class of interest and (x,x′) be a pair of patterns. Then,
x is prunably weaker than x′ iff x ⊃ x′ and Rc(x) ≤ Rc(x

′). ⊓⊔
If a pattern x is prunably weaker than a pattern x′ in the current top-k can-
didates, any super-pattern of x is also weaker than x′, and thus we can safely
prune the subtree rooted by x. Prop. 1 is also useful for this pruning.

2.6 Sequential Covering

Sequential covering, also known as separate-and-conquer, is a traditional search
strategy in rule learning [7, 26]. Also in the literature of discriminative pattern
mining, several methods such as DDPMine [4] take this strategy. Algorithm 1
shows a typical workflow of sequential covering. Sequential covering takes as in-
put the class c of interest and the dataset Dc ∪ D¬c and outputs a set of rules
for class c. In sequential covering, we iteratively build a new rule (Line 3) and
remove all positive examples covered by the new rule (Line 5). The iteration con-
tinues until there remain no positive examples to be covered (Line 2). DDPMine
performs branch-and-bound search in building new rules.

The removal of positive examples surely reduces the overlap of coverage
among generated rules, but there seem to be two problems. First, such a re-
moval prevents us from declarative understanding of the generated rules. In other
words, the meanings of the generated rules reflect a procedural behavior of Al-
gorithm 1, which may not be clear to non-experts. For example, the statistics
used in exploring the first new rule are different from those used in exploring
the second new rule. Second, as Domingos [5] pointed out, available positive
examples dwindle as the iteration continues, and therefore the rules generated
at later iterations can be less accurate in a statistical sense.

Domingos proposed a greedy algorithm in which each rule is learned from
the entire dataset, and referred to his own strategy by conquering-without-
separating [5]. Later, Rijnbeek et al. [21] proposed an algorithm that directly

Exhaustive Covering for Non-redundant Discriminative Itemsets 9

finds a rule condition in disjunctive normal form (DNF), instead of finding con-
junctive rule conditions one by one. A main drawback of this method is its
computational cost, and therefore some extra control parameters limiting the
size of the DNF condition are often required. ExCover, which will be explained
next, also takes the conquering-without-separating approach in an exhaustive
but light-weight manner without control parameters limiting the search space.

3 The Proposed Method

3.1 The Best-Covering Constraint

From now on, we explain the details of ExCover. As illustrated in Section 1,
ExCover seeks for best-covering patterns that are closed on the positives. First,
let us formally define the patterns output by ExCover:

Definition 4. Let c be a class of interest and t ∈ Dc be a positive transaction.
then, a pattern x is said to cover t best when x covers t (i.e. x ⊆ t) and satisfies
the following two conditions for any other pattern x′ that also covers t:

1. Rc(x) ≥ Rc(x
′) if x′ is not a subset of x

2. Rc(x) > Rc(x
′) if x′ is a subset of x

A pattern x is said to be best-covering if there is at least one positive transaction
in Dc which is covered best by x. ⊓⊔

The definition of the “covers-best” relation above says that a pattern x is said
to cover best a positive transaction t when x is of the highest quality among
the patterns covering t. One technical point here is that the requirements on
the quality score of x slightly differ depending on whether the pattern x′ in
comparison is a sub-pattern of x or not. Similarly to the “weaker-than” relation
in Def. 2, no pattern covering t best is allowed to have the same quality as those
of its sub-patterns. These slightly different requirements make it easy to prove
a key property that the best-covering constraint is tighter than the productivity
constraint (Def. 2):

Proposition 2. A pattern x is productive if x is best-covering. ⊓⊔

Proof. We prove this by contraposition. Suppose that x is not productive. That
is, there exists a pattern x′ such that x is weaker than x′, i.e. x′ ⊂ x and
Rc(x

′) ≥ Rc(x). For this x′, any transaction t covered by x is also covered by
x′ since x′ ⊂ x ⊆ t. Then, for any positive transaction t covered by x, the
second condition of the “covers-best” relation is violated, and therefore x is not
best-covering. ⊓⊔

Based on the definition of the best-covering constraint, we can immediately
introduce the following pruning condition:

Proposition 3. Let c be a class of interest and x be a pattern. Suppose that,
for every positive transaction t covered by x, there exists some other pattern x′

covering t such that Rc(x) < Rc(x
′). Then, x and its super-patterns are not

best-covering. ⊓⊔

10 Yoshitaka Kameya

Algorithm 2 ExCover

1: L := an array indexed by t ∈ Dc

2: Initialize L[t] as an empty set for each t ∈ Dc

3: x := an empty pattern
4: T := an initial database constructed from D
5: Call Grow(x, T)
6: Output the patterns

∪
t∈Dc

L[t]

Proof. Let u be x or its super-pattern. Note that Rc(u) ≤ Rc(x) always holds
and any transaction covered by u is also covered by x. Then, for any positive
transaction t covered by u, Rc(u) ≤ Rc(x) < Rc(x

′) holds for x′ in the propo-
sition. From this fact, u cannot cover t best since either of the two conditions
in Def. 4 is unsatisfied. ⊓⊔

In addition, the “covers-best” relation in Def. 4 is restated in a different form
which reduces the computational cost required for set-inclusion check:

Proposition 4. Let c be a class of interest and t ∈ Dc be a positive transaction.
Then, a pattern x covers t best iff x covers t and satisfies one of the following
conditions for any other pattern x′ covering t:

1. Rc(x) > Rc(x
′), and

2. Rc(x) = Rc(x
′) and x is not a superset of x′. ⊓⊔

Proof. Let us introduce three Boolean variables A, B and C which respectively
indicate “x′ is a subset of x,” “Rc(x) > Rc(x

′)” and “Rc(x) = Rc(x
′).” The

“covers-best” relation in Def. 4 is then written as (¬A ⇒ B∨C)∧(A ⇒ B). This
condition is simplified as B∨(C∧¬A), which coincides with the proposition. ⊓⊔

3.2 Algorithm Description

Based on the notions and properties explained so far, ExCover efficiently per-
forms a branch-and-bound search for best-covering patterns closed on the pos-
itives. An underlying strategy of ExCover is to conduct a top-1 mining (top-k
mining where k = 1) concurrently for each positive transaction t. To be specific,
we show the main routine of ExCover in Algorithm 2. Like sequential covering,
ExCover takes as input the class c of interest and the dataset Dc ∪ D¬c. We
first introduce a global array variable L referring to the candidate table which
stores candidate patterns (Lines 1–2). Formally, for each positive transaction
t, L[t] is a candidate set of t’s best-covering patterns, i.e. those covering t and
having the same highest quality score. Then, we call the Grow procedure with
an empty pattern and an initial FP-tree-like database for finding best-covering
patterns closed on the positives in a depth-first manner (Lines 3–5). After the
call, ExCover outputs all patterns stored in L, removing duplicates (Line 6).3

3 In other words, ExCover outputs all patterns having the same best score. We only
exclude apparently redundant patterns to avoid the loss of crucial information.

Exhaustive Covering for Non-redundant Discriminative Itemsets 11

Algorithm 3 Grow(x, T)

Require: x: the current pattern, T : conditional database corresponding to x
1: B := {x ∈ X | x ̸∈ x and x is a predecessor of the core item lastly added into x}
2: for each x ∈ B enumerated in the ascending order w.r.t. ≺ do
3: x′ := {x} ∪ x and compute Rc(x

′) from T
4: if

∪
t∈Dc(x′) L[t] ̸= ∅ and Rc(x

′) < mint∈Dc(x′),z∈L[t] Rc(z) then continue

5: x∗ := Γc(x
′)

6: if x∗ does not preserve x’s suffix then continue
7: Construct T ∗ corresponding to x∗ from T
8: Compute Rc(x

∗) from T ∗ together with p(x∗ | c) and p(x∗ | ¬c)
9: Call Add(x∗) if p(x∗ | c) ≥ p(x∗ | ¬c)
10: Call Grow(x∗, T ∗)
11: end for

The Grow procedure, presented in Algorithm 3, recursively visits patterns
in a depth-first order over the enumeration tree like the one illustrated in Fig. 1
(right). When visiting a pattern x, as a part of SPC extension, we collect the
core items to be added from unadded predecessors of the core item lastly added
(Line 1) and pick them up one by one in the ascending order w.r.t. ≺ (Line 2).
Then, for each collected item x, we first obtain a temporary pattern x′ by adding
x into the current pattern x and then compute its upper bound of quality from
the conditional database corresponding to x (Line 3). In the pruning condition in
Line 4, the former part

∪
t∈Dc(x′) L[t] ̸= ∅ checks whether there exists a candidate

pattern stored in L covering a positive transaction covered by x′.4 If there does
not exist, x′ is free from being pruned regardless of its quality. The latter part,
derived from Prop. 3, then checks the quality of the temporary pattern x′. If the
pruning condition is not satisfied, we generate a new pattern x∗ closed on the
positives from the temporary pattern (Line 5). We then we check the validity
of x∗ w.r.t. SPC extension (Line 6), and invalid ones are pruned immediately.
For a valid pattern x∗, we construct a new conditional database T ∗ (Line 7),
evaluate the quality of x∗ (Line 8), add x∗ to the candidate table L (Line 9),
and further visit x∗ (Line 10). Since we only need the patterns characterizing
class c, we exclude x∗ such that p(x∗ | c) is lower than p(x∗ | ¬c), but in any
case we continue to visit the super-patterns of x∗.

The Add procedure, presented in Algorithm 4, adds a pattern satisfying the
best-covering constraint into the candidate table L. The procedure is derived
directly from Prop. 4. Since L[t] contains candidate patterns with the same
highest quality score, to obtain the highest score for a positive transaction t, in
Line 2, it is sufficient to pick up z arbitrarily from L[t] as a representative.

Lastly, we add three remarks. First, the property of SPC extension on the
visiting order in Prop. 1 effectively works in Line 4 of the Grow procedure. That
is, since it is guaranteed that all sub-patterns of x′ have already been visited,
each L[t] is not empty for t ∈ Dc(x

′) at least when x′ has two or more core items,

4 Remind that Dc(x) denotes the set of positive transactions covered by a pattern x.

12 Yoshitaka Kameya

Algorithm 4 Add(x)

Require: x: a pattern to be added
1: for each t ∈ Dc(x) do
2: Let r be the quality Rc(z) of an arbitrary pattern z in L[t]
3: if Rc(x) > r then
4: L[t] := {x}
5: else if Rc(x) = r and x is not a superset of any pattern z in L[t] then
6: L[t] := L[t] ∪ {x}
7: end if
8: end for

and hence the latter part of the pruning condition is not skipped. Second, for
reducing the computational effort, we delay the closure operation Γc, which is
costly in general, until Line 5. Instead, we refer to Rc(x

′) rather than Rc(x
∗) in

the pruning condition in Line 4. This operation is justified by the nature of the
patterns closed on the positives and the way of obtaining the upper bound Rc,
i.e. we have Rc(Γc(x)) = Rc(x) for any pattern x. The third remark is that, we
frequently refer to Dc(x) for a given pattern x. So for quick reference to Dc(x),
a data structure for conditional databases in a vertical layout [29] is crucial from
a practical point of view. In the implementation used in our experiments, we
introduced a simple extension of FP-trees [12] in which each node contains a list
of TIDs for each class in addition to the counts.

4 Experimental Results

We conducted two experiments. The first experiment aims at confirming whether
we can obtain a more compact set of discriminative itemsets for the mushroom
dataset, which is available from the UCI Machine Learning Repository (http:
//archive.ics.uci.edu/ml/datasets/Mushroom). The second one compares
the search space using the datasets available from http://dtai.cs.kuleuven.

be/CP4IM/datasets/.
In the first experiment, we transform the original dataset into a transaction

dataset, treating each attribute-value pair as an item. We then obtained the
patterns shown in Table 2 (above) by a previous method [14] for mining top-k
productive patterns closed on the positives and the patterns shown in Table 2
(below) by ExCover. k = 30 was specified in the previous method but only eight
patterns were generated. Among the patterns obtained by the previous method,
the top-2 patterns cover 4,112 out of 4,208 positive transactions. Although the
third-ranked pattern has high quality but the positive transactions covered by it
are also covered by the top-2 patterns. The remaining 96 positive transactions, on
the other hand, are covered the fifth-ranked pattern. From this result, we can say
that the patterns like the third-ranked one are redundant and specifying k < 5
implies losing information from 96 positive transactions. In contrast, thanks to
the best-covering constraint, redundant patterns including the third-ranked one
in Table 2 (above) are automatically excluded from the output of ExCover.

Exhaustive Covering for Non-redundant Discriminative Itemsets 13

Table 2. Discriminative patterns for the edible class in the mushroom dataset, obtained
by a previous method [14] (above) and obtained by ExCover (below).

Rank Pattern F-score
1 {odor=n, veil-type=p} 0.881
2 {gill-size=b, stalk-surface-above-ring=s, veil-type=p} 0.866
3 {gill-size=b, stalk-surface-below-ring=s, veil-type=p} 0.837
4 {gill-size=b, veil-type=p} 0.798
5 {stalk-surface-above-ring=s, veil-type=p} 0.776
6 {ring-type=p, veil-type=p} 0.771
7 {stalk-surface-below-ring=s, veil-type=p} 0.744
8 {veil-type=p} 0.682

Rank Pattern F-score
1 {odor=n, veil-type=p} 0.881
2 {gill-size=b, stalk-surface-above-ring=s, veil-type=p} 0.866
3 {stalk-surface-above-ring=s, veil-type=p} 0.776

Table 3. Statistics on the datasets used in the second experiment.

Dataset #Transactions #Items Dataset #Transactions #Items
anneal 812 93 lymph 148 68
audiology 216 148 mushroom 8,124 119
australian-credit 653 125 primary-tumor 336 31
german-credit 1,000 112 soybean 630 50
heart-cleveland 296 95 splice-1 3,190 287
hepatitis 137 68 tic-tac-toe 958 27
hypothyroid 3,247 88 vote 435 48
kr-vs-kp 3,196 73 zoo-1 101 36

The statistics on the datasets used in the second experiment is summarized
in Table 3. With these datasets, we compare the search space, i.e. the number
of visited patterns in the enumeration tree, between the previous method above
and ExCover.5 For the previous method, we made three runs varying k = 10, 100
and 1, 000. First, we show the number of output patterns in Fig. 2 (top). In the
graphs, P+C(k=10) corresponds to the case with the previous method under
k = 10 (P+C stands for productivity and closedness), and so on. The results
show that ExCover outputs a more compact set of patterns, as Prop. 2 formally
suggests. For most of the datasets, there are more than ten productive patterns,
and there are fewer (sometimes by an order of magnitude) best-covering patterns.
A more drastic difference was observed in the number of visited patterns shown
in Fig. 2 (middle). The search space of the previous method varies with k and
hence a suitable k is sometimes unclear in advance, whereas ExCover totally
explores the search space of moderate size. Finally, Fig. 2 (bottom) shows the
run time averaged over 30 runs. Our implementation is written in Java and we
used Intel Core i7 3.6GHz. The result clearly shows that ExCover finishes in
practical time, i.e. within one second in most datasets.

5 More formally, a visited pattern is a pattern closed on the positives produced at
Line 5 in the Grow procedure.

14 Yoshitaka Kameya

10
0

10
1

10
2

10
3

10
4

anneal

audiology

australian-credit

german-credit

heart-cleveland

hepatitis

hypothyroid

kr-vs-kp

lymph
mushroom

primary-tumor

soybean

splice-1

tic-tac-toe

vote
zoo-1

P+C(k=10)
P+C(k=100)

P+C(k=1000)
ExCover

10
1

10
2

10
3

10
4

10
5

10
6

anneal

audiology

australian-credit

german-credit

heart-cleveland

hepatitis

hypothyroid

kr-vs-kp

lymph
mushroom

primary-tumor

soybean

splice-1

tic-tac-toe

vote
zoo-1

P+C(k=10)
P+C(k=100)

P+C(k=1000)
ExCover

10
-2

10
-1

10
0

10
1

10
2

anneal

audiology

australian-credit

german-credit

heart-cleveland

hepatitis

hypothyroid

kr-vs-kp

lymph
mushroom

primary-tumor

soybean

splice-1

tic-tac-toe

vote
zoo-1

P+C(k=10)
P+C(k=100)

P+C(k=1000)
ExCover

Fig. 2. The number of output patterns (top) and visited patterns (middle), and the
average run time (bottom, in seconds). The y-axis is logarithmic and only one pattern
were found in zoo-1. The error bars for average run time are narrow and omitted.

5 Related Work

Associative classification [23] is a task for building classifiers from class asso-
ciation rules (CARs) and is closely related to discriminative pattern mining.
CBA [18] is the first associative classifier, in which we first extract CARs using
two user-specified control parameters: minimum support and minimum confi-
dence. To filter out redundant CARs, CMAR [17] further introduces the pro-
ductivity constraint (based on confidence) and χ2 testing. The closest method
to ExCover should be HARMONY [25] since it seeks for CARs which have the
highest confidence for at least one positive transaction. However, as said earlier,
its original paper does not mention redundancy among CARs. In addition, the
pruning mechanism in HARMONY is fairly complicated and heavily relies on

Exhaustive Covering for Non-redundant Discriminative Itemsets 15

the minimum support threshold given by the user. One possible reason for this
is that a finite upper bound of confidence is not easy to obtain. On the other
hand, using a dual-monotonic quality score whose upper bound is finite, Ex-
Cover performs simple branch-and-bound pruning with no user-specified control
parameters. To achieve parameter-freeness, as done by the fitcare algorithm [3],
automatic tuning of control parameters looks promising, but it may weaken the
explainability unless the objective function for tuning is clear to the user.

In addition, a generic problem-solving framework, which includes pattern
set mining, based on constraint programming was recently developed [11]. We
are rather focusing on exploring a desirable combination of comprehensible con-
straints, and developing a specific algorithm that works with less resources. For
example, ExCover chooses a depth-first search over a suffix enumeration tree
that brings less memory consumption and more chances for pruning. Lastly, Xin
et al. proposed a method for mining non-redundant frequent patterns by min-
imizing the overlaps among the patterns’ coverage over transactions [27]. The
best-covering constraint balances well the relevance to the class of interest with
the degrees of overlaps.

6 Concluding Remarks

This paper proposed an algorithm called ExCover that finds best-covering pat-
terns closed on the positives in an exhaustive manner. Formal discussions and
experimental results exhibit that ExCover efficiently finds a more compact set
of patterns in comparison with previous methods. Although ExCover was mo-
tivated by knowledge discovery situations, it is interesting to build a practical
classifier using best-covering patterns. For that, an extension for handling con-
tinuous attributes seems indispensable. In addition, the idea behind ExCover
seems not limited to closed itemsets. For example, it would be useful to extend
ExCover for discriminative sequential pattern mining [9].

References

1. Aggarwal, C.C.: Data Mining: The Textbook. Springer (2015)

2. Bayardo, R., Agrawal, R., Gunopulos, D.: Constraint-based rule mining in large,
dense databases. Data Mining and Knowledge Discovery 4, 217–240 (2000)

3. Cerf, L., Gay, D., Selmaoui, N., Boulicaut, J.F.: A parameter-free associative clas-
sification method. In: Proc. of DaWaK-08. pp. 293–304 (2008)

4. Cheng, H., Yan, X., Han, J., Yu, P.S.: Direct discriminative pattern mining for
effective classification. In: Proc. of ICDE-08. pp. 169–178 (2008)

5. Domingos, P.: The RISE system: conquering without separating. In: Proc. of
ICTAI-94. pp. 704–707 (1994)

6. Dong, G., Bailey, J. (eds.): Contrast Data Mining: Concepts, Algorithms, and
Applications. CRC Press (2012)

7. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer
(2012)

16 Yoshitaka Kameya

8. Garriga, G.C., Kralj, P., Lavrač, N.: Closed sets for labeled data. J. of Machine
Learning Research 9, 559–580 (2008)

9. Grosskreutz, H., Lang, B., Trabold, D.: A relevance criterion for sequential pat-
terns. In: Proc. of ECML/PKDD-13. pp. 369–384 (2013)

10. Grosskreutz, H., Paurat, D.: Fast and memory-efficient discovery of the top-k rel-
evant subgroups in a reduced candidate space. In: Proc. of ECML/PKDD-11. pp.
533–548 (2011)

11. Guns, T., Nijssen, S., De Raedt, L.: k-Pattern set mining under constraints. IEEE
Trans. on Knowledge and Data Engineering 25(2), 402–418 (2013)

12. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: Proc. of SIGMOD-00. pp. 1–12 (2000)

13. Han, J., Wang, J., Lu, Y., Tzvetkov, P.: Mining top-k frequent closed patterns
without minimum support. In: Proc. of ICDM-02. pp. 211–218 (2002)

14. Kameya, Y., Asaoka, H.: Depth-first traversal over a mirrored space for non-
redundant discriminative itemsets. In: Proc. of DaWaK-13. pp. 196–208 (2013)

15. Kralj Novak, P., Lavrač, N., Webb, G.I.: Supervised descriptive rule discovery:
a unifying survey of contrast set, emerging pattern and subgroup mining. J. of
Machine Learning Research 10, 377–403 (2009)

16. Li, J., Li, H., Wong, L., Pei, J., Dong, G.: Minimum description length principle:
generators are preferable to closed patterns. In: Proc. of AAAI-06. pp. 409–414
(2006)

17. Li, W., Han, J., Pei, J.: CMAR: accurate and efficient classification based on mul-
tiple class-association rules. In: Proc. of ICDM-01. pp. 369–376 (2001)

18. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining.
In: Proc. of KDD-98. pp. 80–86 (1998)

19. Morishita, S., Sese, J.: Traversing itemset lattices with statistical metric pruning.
In: Proc. of PODS-00. pp. 226–236 (2000)

20. Pasquier, N., Bastide, Y., Taouli, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In: Proc. of ICDT-99. pp. 398–416 (1999)

21. Rijnbeek, P.R., Kors, J.A.: Finding a short and accurate decision rule in disjunctive
normal form by exaustive search. Machine Learning 80, 33–62 (2010)

22. Soulet, A., Crémilleux, B., Rioult, F.: Condensed representation of emerging pat-
terns. In: Proc. of PAKDD-04. pp. 127–132 (2004)

23. Thabtah, F.: A review of associative classification mining. Knowledge Engineering
Review 22(1), 37–65 (2007)

24. Uno, T., Asai, T., Uchida, Y., Arimura, H.: An efficient algorithm for enumerating
closed patterns in transaction databases. In: Proc. of DS-04. pp. 16–31 (2004)

25. Wang, J., Karypis, G.: HARMONY: efficiently mining the best rules for classifica-
tion. In: Proc. of SDM-05. pp. 205–216 (2005)

26. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann, 2nd edn. (2005)

27. Xin, D., Han, J., Yan, X., Cheng, H.: On compressing frequent patterns. Data &
Knowledge Engineering 60(1), 5–29 (2007)

28. Yuan, C., Lim, H., Lu, T.C.: Most relevant explanation in Bayesian networks. J.
of Artificial Intelligence Research 42, 309–352 (2011)

29. Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. on Knowledge
and Data Engineering 12(3), 372–390 (2000)

