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Abstract. Discriminative pattern mining is known under the names of
subgroup discovery, contrast set mining, emerging pattern mining, etc.
and has been intensively studied for the last 15 years. Based on the so-
phisticated techniques developed so far (e.g. branch-and-bound search,
minimum support raising, and redundancy elimination including the use
of closed patterns), this paper proposes an efficient exact algorithm for
finding top-k discriminative patterns that are not redundant and would
be of value at a later step in prediction or knowledge discovery. The
proposed algorithm is unique in that it conducts depth-first search over
enumeration trees in a mirrored form of conventional ones, and by this de-
sign we can keep compact the list of candidate top-k patterns during the
search and consequently high the minimum support threshold. Experi-
mental results with the datasets from UCI Machine Learning Repository
clearly show the efficiency of the proposed algorithm.

Keywords: discriminative pattern mining, top-k mining, minimum sup-
port raising, closed itemsets, dual-monotonicity, suffix enumeration trees.

1 Introduction

Discriminative pattern mining is known under the names of subgroup discov-
ery [21], contrast set mining [1], emerging pattern mining [3], supervised de-
scriptive rule discovery [11], cluster grouping [23], and so on and has been in-
tensively studied for the last 15 years. The obtained discriminative patterns can
be used to characterize a particular class c of interest, or to build more precise
classifiers. One current issue in discriminative pattern mining is to deal with
the redundancy among the obtained patterns. For example, suppose that we are
performing top-k mining and a pattern {A} is significantly relevant to a class c
of interest. Then, the patterns including A, such as {A,B}, {A,C} and {A,B,C},
also tend to be relevant to c, and would occupy the list of the final top-k pat-
terns. So we hope to find a more informative collection of top-k patterns by
eliminating such redundancy in a reasonable way. For instance, let us introduce
a constraint called productivity [20]. Then, if a pattern {A,C,D} is more relevant
to the class c of interest than another pattern {A,C}, we consider that there is
something meaningful in the combination of A, C and D, but if the former is less
relevant than the latter, the former can be considered redundant and removed.
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{A}

{A, B} {A, C} {A, D}

{B} {C} {D}

{C, D}{B, C} {B, D}

{B, C, D}{A, B, C} {A, B, D} {A, C, D}

{A, B, C, D}

{D}

{C, D}{B, D}{A, D}

{C}{B}{A}

{A, B} {B, C}{A, C}

{A, B, C} {B, C, D}{A, C, D}{A, B, D}

{A, B, C, D}

Fig. 1. A prefix enumeration tree (left) and a suffix enumeration tree (right).

In the literature of frequent/discriminative pattern mining, we have conven-
tionally used prefix enumeration trees (e.g. [1, 2, 19]), illustrated in Fig. 1 (left)
which include items A, B, C and D ordered as A ≺ B ≺ C ≺ D. This paper,
on the other hand, proposes to use suffix enumeration trees [10], illustrated in
Fig. 1 (right), as a mirrored form of prefix enumeration trees. In a prefix (resp.
suffix) enumeration tree, the parent of each node (pattern)1 is its immediate
prefix (resp. suffix). It is less known that when branching ascendingly w.r.t. ≺,
FP-Growth [8] implicitly runs over suffix enumeration trees. The merit of using
suffix enumeration trees comes from a property that when a node x is visited in
a depth-first (and left-to-right) search, all of x’s sub-patterns have already been
visited. In the suffix enumeration tree in Fig. 1, when visiting {A,C,D}, we have
already visited {A}, {C}, {D}, {A,C}, {A,D} and {C,D}, but this is not the case
in prefix enumeration trees. This property on the visiting order makes efficient
the tests on the set-inclusion-based constraints among patterns.

Based on the observation above, we propose an efficient exact algorithm for
finding top-k non-redundant discriminative patterns under two set-inclusion-
based constraints among patterns. One is closedness, which has been studied in
frequent pattern mining [15, 19], and the other is productivity illustrated before.
We can say that the proposed algorithm has two technical contributions. First, it
adopts a new, relaxed condition called dual-monotonicity, which is desired to be
satisfied by the scores on relevance. Indeed, dual-monotonicity is shown to play
a crucial role in various aspects of the proposed algorithm. Second, the proposed
algorithm introduces a mirrored version of prefix-preserving closure extension in
LCM [19] in order to traverse over a search space like a suffix enumeration tree.
We show formally and empirically that this mirrored operation successfully keeps
compact the list of candidate top-k patterns during the search and consequently
high the minimum support threshold.

The remainder of this paper is outlined as follows. Section 2 describes dual-
monotonicity together with the concepts and the techniques that have been
developed in the literature of discriminative pattern mining. Section 3 presents
our proposed method. Some experimental results are reported in Section 4, and
lastly Section 5 concludes the paper.

1 We only consider enumeration trees which have a one-to-one map between the nodes
in a tree and the possible patterns. So we refer to a node by its corresponding pattern.
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2 Dual-monotonicity of relevance scores

2.1 Preliminaries

First, we introduce some notations. We consider a dataset D = {t1, t2, . . . , tN}
of size N , where ti is a transaction, a set of items. The set of all items appearing
in D is denoted by X . Also each transaction belongs to one of pre-defined classes
C, and let ci be the class of transaction ti. A pattern x is a subset of X , and
let P be the set of all possible patterns. We say that x matches a transaction ti
when x ⊆ ti. Depending on the context, we interchangeably denote a pattern as
a vector x = (x1, x2, . . . , xn), as a set x = {x1, x2, . . . , xn}, or as a conjunction
x = (x1 ∧ x2 ∧ . . . ∧ xn). Besides, we introduce some total order ≺ among
items, and by default, we place the items in a transaction/pattern following ≺.
Transaction/patterns can be ordered in a lexicographical way w.r.t. ≺.

The probabilities treated in this paper are all empirical ones, i.e. they are
computed from the statistics on the dataset D. First, we define some subsets
of D: Dc = {i | ci = c, 1 ≤ i ≤ N}, D(x) = {i | x ⊆ ti, 1 ≤ i ≤ N} and
Dc(x) = {i | ci = c,x ⊆ ti, 1 ≤ i ≤ N}, where c ∈ C is the class of interest. A
joint probability p(c,x) is then obtained as |Dc(x)|/N . Also we use a symbol ¬
for negation, e.g. we have D¬c = D \ Dc, p(c,¬x) = |Dc \ Dc(x)|/N , p(¬c,x) =
|D(x)\Dc(x)|/N , and so on. Using joint probabilities, marginal probabilities and
conditional probabilities are computed, e.g. we obtain p(x) = p(c,x) + p(¬c,x),
p(c) = p(c,x) + p(c,¬x) or p(c | x) = p(c,x)/p(x).

2.2 Relevance Scores

As stated before, we seek for k patterns that are relevant to a class c of interest.
For that, we first adopt a relevance score Rc, a function from P to R (the set
of real numbers). The relevance measured by Rc(x) can also be regarded as
interestingness of a class association rule x ⇒ c, where x is a pattern. Among
dozens of relevance scores proposed so far [4, 10, 11], we adopt F-score Fc(x) =
2p(c | x)p(x | c)/(p(c | x)+p(x | c)) = 2p(c,x)/(p(c)+p(x)), which is a popular
measure in information retrieval or evaluation of classifiers.

Now consider a class association rule x ⇒ c applied to the original dataset
D. Then, true positive rate (TPR) is written as p(x | c) = p(c,x)/p(c) in our
notation, and called the positive support of x for class c. Similarly, false positive
rate (FPR) is written as p(x | ¬c) and called the negative support. The ROC
space [4, 14] is then formed by TPR (as y-axis) and FPR (as x-axis) and each
pattern x is located as a point (v, u) in the ROC space, where u and v respectively
indicate TPR and FPR of x. For brevity, ‘support’ means positive support unless
explicitly noted. Since we seek for the patterns relevant to a particular class c,
we are only interested in the patterns x such that p(x | c) ≥ p(x | ¬c) or
equivalently p(c | x) ≥ p(c).

In the literature, the convexity of the relevance score has been exploited
in branch-and-bound pruning [7, 13, 14, 23]. Recently Nijssen et al. introduced
a property called zero diagonal convexity [14]: Rc(x) is zero diagonal convex iff



4 Yoshitaka Kameya and Hiroki Asaoka

Rc(x) is convex and reaches its minimum in all the points on the diagonal TPR =
FPR in the ROC space. Several popular relevance scores such as the Fisher score,
information gain, Gini index, χ2, support difference are zero diagonal convex [14].
Furthermore, zero diagonal convexity can be relaxed as a new condition called
dual-monotonicity, which is defined as follows:

Definition 1. Let Rc be a relevance score for a class c of interest. Then, Rc is
dual-monotonic iff Rc(x) is monotonically increasing w.r.t. p(x | c) and mono-
tonically decreasing w.r.t. p(x | ¬c) wherever p(x | c) ≥ p(x | ¬c). ut

Recall here that Rc(x) is a function of TPR u = p(x | c) and FPR v = p(x |
¬c). Interestingly, dual-monotonicity includes two out of Piatetsky-Shapiro’s
three conditions desired for relevance scores [4, 17].2 Besides, dual-monotonicity
obviously holds if Rc(x) satisfies zero diagonal convexity. In contrast, for F-
score, dual-monotonicity holds while convexity does not. As we will see, dual-
monotonicity plays a crucial role in various aspects of the proposed algorithm.

2.3 Redundancy Elimination with Set-inclusion-based Constraints

As stated in the introduction, elimination of redundant patterns is necessary for
having more informative results. In this paper, we focus on redundancy elim-
ination based on set-inclusion-based constraints among patterns. One popular
technique for this is to use the closedness constraint, and we additionally intro-
duce a generalized version of set-inclusion-based constraint called productivity.

To explain the closedness constraint, we first introduce a closure operator
Γ such that Γ (x,D) =

⋂
t∈D(x) t, where D is the transactions and x is some

pattern. Here Γ (x,D) is called a closure of x w.r.t. D. A closed pattern is then a
pattern x such that x = Γ (x,D). Each closed pattern x is the maximal pattern
in an equivalence class [x] = {x′ | D(x) = D(x′)} = {x′ | x = Γ (x′,D)} and
seen as a representative of [x]. Since the size of [x] can be exponential, focusing
only on closed patterns often leads to a significant reduction of the search space.

Next, let us consider a situation for discriminative pattern mining. Let c be a
class of interest, Dc the transactions that belong to c, and x some pattern. Also
let x∗ = Γ (x,Dc). We further note that Dc(x

∗) = Dc(x) since x∗ and x are in
the same equivalence class [x], and D′(x∗) ⊆ D′(x) for any transactions D′ since
x∗ is the maximal pattern in [x]. Then, under a dual-monotonic relevance score
Rc, we have Rc(x

∗) ≥ Rc(x) since p(x∗ | c) = p(x | c) (from Dc(x
∗) = Dc(x))

and p(x∗ | ¬c) ≤ p(x | ¬c) (from D¬c(x
∗) ⊆ D¬c(x)) [5, 18]. Now, interestingly,

it is also justified from the viewpoint of the relevance scoreRc to focus only on the
closed patterns obtained by the closure operator to Dc, and such closed patterns
are often called the closed-on-the-positives. Hereafter we abbreviate Γ (x,Dc) as
Γc(x) and called it the closure of x on the positives.

2 The remaining one is that Rc(x) = 0 when p(x | c) = p(x | ¬c), i.e. Rc(x) reaches
zero in all the points on the diagonal TPR = FPR [4, 17].
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In addition, we introduce another set-inclusion-based constraints called pro-
ductivity, whose original version is defined with confidence (i.e. Rc(x) is fixed as
p(c | x)) [2, 20]. Productivity is defined as follows:3

Definition 2. Let c be a class of interest. Then, for a pair of patterns x and
x′ in P, x is weaker than x′ iff x ⊃ x′ and Rc(x) ≤ Rc(x

′). A pattern x is
productive iff x is not weaker than any sub-pattern of x. ut

In the literature [5, 6, 12], a pattern x is said to be dominated by another
pattern x′ iff Dc(x) ⊆ Dc(x

′) and D¬c(x) ⊇ D¬c(x
′), and a pattern x is rel-

evant iff x is not dominated by any other pattern. Garriga et al. [5] derived
a condition equivalent to this relevance: a pattern x is relevant iff x is closed
on the positives and there is no generalization x′ ⊂ x closed on the positives
such that D¬c(x

′) = D¬c(x). Here it is straightforward to show that under a
dual-monotonic relevance score Rc, productivity implies relevance in the sense
above (i.e. productivity is a tighter constraint) among the patterns closed on the
positives. From this observation, in this paper, we aim to find top-k productive
closed-on-the-positives.

2.4 Branch-and-Bound Pruning in Top-k Mining

Suppose that we conduct a branch-and-bound search for top-k patterns under
a dual-monotonic relevance score Rc. Also consider an anti-monotonic upper
bound Rc(x) of Rc(x) of a pattern x. Then, if it is found that Rc(x) < Rc(z),
where z is the pattern with the k-th greatest score, we can safely prune the
subtree rooted by x. This pruning exploits the anti-monotonicity of Rc, which
guarantees Rc(x

′) ≤ Rc(x
′) ≤ Rc(x) < Rc(z) for any super-pattern x′ of x.

Several previous methods obtain the upper bound by considering the most
optimistic scenario. Since Rc(x) is dual-monotonic, by definition Rc(x) is mono-
tonically increasing (resp. decreasing) w.r.t. p(x | c) (resp. p(x | ¬c)), and both
p(x | c) and p(x | ¬c) are anti-monotonic w.r.t. pattern-inclusion. Thus, the most
optimistic scenario when extending x into x′ is that p(x′ | c) remains p(x | c) and
p(x′ | ¬c) turns to be zero. So a general heuristic for obtaining an upper bound
Rc(x) is to substitute p(x | ¬c) := 0 into the definition of Rc(x).

4 After having
the upper bound Rc(x) where p(x | ¬c) is constant at zero, Rc(x) is always
anti-monotonic w.r.t. pattern-inclusion thanks to the dual-monotonicity of Rc.
For example, F-score is defined as Fc(x) = 2p(c | x)p(x | c)/(p(c | x)+p(x | c)),
so we obtain its upper bound as Fc(x) = 2p(x | c)/(1 + p(x | c)). The above
heuristic is applicable to any dual-monotonic relevance scores.5

Then, we translate branch-and-bound pruning into minimum support rais-
ing [9]. In top-k mining, we usually use an ordered list of candidate patterns,

3 Weakness in this definition is also called strong dominance in the context of relevant
explanation in Bayesian networks [22].

4 Equivalent substitutions are also possible: p(c | x) := 1, p(¬x | ¬c) := 1, and so on.
5 However, for some scores whose upper bounds are always high, there would be no
chance of pruning. For instance, a relevance score called growth rate [3] GRc(x) =
p(x | c)/p(x | ¬c) goes into infinity when substituting p(x | ¬c) := 0.
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called the candidate list in this paper, and insert the patterns found in the mid-
dle of the search into the list in the descending order of the relevance score. A
pattern x cannot stay in the final top-k patterns if Fc(x) = 2p(x | c)/(1 + p(x |
c)) < Fc(z), where z is the k-th pattern. Here we rewrite this condition as:
p(x | c) < Fc(z)/(2 − Fc(z)) = Uc(z). When the relevance score is dual-
monotonic, this rewriting is always valid.6 Here Uc(z) works as a threshold for
the support of x and leads to minimum support raising. That is, starting with a
small value (e.g. σmin := 1/|Dc|), the minimum support is repeatedly updated by
σmin := max{Uc(z), σmin} during the search. Thanks to the translation above,
we can inherit fast frequent pattern mining algorithms like FP-Growth [8].

2.5 Search Strategies under Productivity

In this subsection, we describe search strategies for handling the productivity
constraint in top-k branch-and-bound search. As stated before, top-k mining
often uses a candidate list L that stores the current top-k candidate patterns. By
the nature of minimum support raising, a new minimum support is set heavily
depending on the k-th greatest score in L, and thus the effect of minimum
support raising is rather limited if we relax the size limit of L and add the
patterns that are not truly productive patterns. For example, consider the prefix
enumeration tree in Fig. 1, where x = {A,C,D} is visited before x′ = {A,D} in
a depth-first search. When visiting x, it is inevitable to add x into L since it is
uncertain whether x is weaker than x′ at the moment. Contrastingly, we should
keep the candidate list L as compact as possible, i.e. wherever possible we should
filter out immediately the patterns that are not truly productive patterns.

Fortunately, if a pattern x is guaranteed to be visited after all sub-patterns
of x have been visited, we can filter out x immediately if x is weaker than some
existing pattern in the candidate list L. Typically breadth-first search, where
shorter patterns are visited earlier, enables this filtering. Also for the same pur-
pose, recent work by Grosskreutz et al. [6] proposes a memory-efficient method
based on iterative deepening where ‘depth’ is the maximum size of patterns
to be found. Furthermore, in this paper, following RP-Growth [10], we adopt
memory-efficient depth-first traversal over a search space like suffix enumeration
trees illustrated in the introduction. We take this strategy because the overhead
of iterative deepening seems not ignorable in finding long patterns.

Furthermore, we also inherit aggressive pruning from RP-Growth. This prun-
ing is based on an extended notion of weakness defined as follows:

Definition 3. Let c be a class of interest, and x, x′ be a pair of patterns in P.
Then, x is prunably weaker than x′ iff x ⊃ x′ and Rc(x) ≤ Rc(x

′). ut
If a pattern x is prunably weaker than some pattern x′ in the current candidate
list, any super-pattern of x is also weaker than x′, and thus we can safely prune
the subtree rooted by x in finding top-k productive patterns.

6 For many scores, it is possible to have Uc(z) in closed form. A typical exception is
the case with information gain, since it includes the entropy function in its definition.
In such a case, the threshold in the right hand side should be numerically solved.
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3 The Proposed Method

3.1 Suffix-Preserving Closure Extension

Based on the concepts and the techniques in Section 2, from now, we propose
an efficient exact algorithm for top-k productive closed-on-the-positives. We
have seen that, via minimum support raising, branch-and-bound pruning can
be plugged into frequent closed pattern mining algorithms like LCM [19]. LCM
is the first algorithm that introduces prefix-preserving closure extension (PPC
extension, for short) for avoiding duplicate visits to a pattern. So we aim to run
LCM over suffix enumeration trees, by introducing a mirrored version of PPC
extension, called suffix-preserving closure extension (SPC extension).

Definition 4. Let c be a class of interest, Dc the transactions in c, x a pattern
in P, x an item in X and Σx(x) = x∩{x′ | x ≺ x′}. Then, the suffix-preserving
closure extension of a pattern x by an item x is defined as x∗ = Γc({x} ∪ x)
such that (i) x 6∈ x, (ii) x ≺ core(x) and (iii) Σx(x

∗) = Σx(x), where core(x)
is the maximum item x w.r.t. ≺ such that Dc(x ∩ {x′ | x � x′}) = Dc(x). ut

Here Σx(x) is the suffix of x starting from the successor of x, and Condition
(iii) says that such a suffix must be preserved between the original pattern and
the extended one. To handle core(·) procedurally, a useful property is known [19]:
in an SPC extension x∗ = Γc({x} ∪x), core(x∗) is exactly the added item x. In
this paper, for each pattern x, we consider to record all of such added items in
a chain of SPC extensions producing x and call them the core items in x.

To illustrate, let us consider nine example transactions shown in Fig. 2 (top-
left), each belongs to one of two classes {+,−}. Here we are interested in class +.
Then, we have a total order A ≺ B ≺ C ≺ E ≺ D as a descending order of F-score
in Fig. 2 (bottom-left). Fig. 2 (top-right) is an enumeration tree obtained by the
exhaustive applications of SPC extension, where, at each branch, the core items
to be added are chosen in the ascending order w.r.t. ≺. Such a tree is hereafter
called an SPC enumeration tree. In Fig. 2, the core items are underlined, and
among them, the doubly underlined ones are the core items which are added
last. For example, given an empty pattern x = ∅, we apply SPC extension by
item C to the example transactions and obtain x∗ = Γc({C} ∪ ∅) = {A,C}. In
this case, C is a (the last) core item in {A,C}, while A is not.

3.2 Properties Related to SPC Extension

In this subsection, we show some key properties related to SPC extension in
finding top-k productive closed-on-the-positives. Before that, we first obtain a
tree like Fig. 2 (bottom-right) by extracting core items from an SPC enumeration
tree, and call it a core enumeration tree. Let T and Tcore be an SPC enumeration
tree and its core enumeration tree, respectively. It is then easy to show that for
a node (pattern) x in Tcore, the corresponding node in T is its closure on the
positives, i.e. Γc(x). Also we see that T and Tcore are isomorphic from the way of
adding core items. For example, for the node {B,D} in the core enumeration tree
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Class Transactions
+ {A,B,D,E}
+ {A,B,C,D,E}
+ {A,C,D,E}
+ {A,B,C}
+ {B}
− {A,B,D,E}
− {B,C,D}
− {C,D,E}
− {B,D,E}

{ A, E, D }{ A, C }{ B }{ A }

{ A, B } { A, B, C } { A, C, E, D }{ A, B, E, D }

{ A, B, C, E, D }

Item x p(x | +) p(x | −) F+(x)
A 0.8 0.25 0.780
B 0.8 0.75 0.627
C 0.6 0.50 0.571
D 0.6 1.00 0.462
E 0.6 0.75 0.511

{D}{C}{B}{A}

{A, B} {B, C} {C, D}{B, D}

{B, C, D}

Fig. 2. Example transactions (top-left), F-scores of items (bottom-left), the enumera-
tion tree with SPC extension (top-right) and its core enumeration tree (bottom-right).

in Fig. 2, we have {A,B,E,D} in the SPC enumeration tree in Fig. 2. Besides,
a core enumeration tree is a suffix enumeration tree with some subtrees being
removed. Indeed, Fig. 2 (bottom-right) is the suffix enumeration tree in Fig. 1
with several leaves ({A,C}, {A,D}, etc.) being removed. This property comes
from Condition (ii) of SPC extension (we are only allowed to add, as a new core
item, a predecessor of the last core item) together with the fact that the core
items to be added at each branch are chosen ascendingly w.r.t. ≺.

From the observations above, we will prove a couple of propositions that jus-
tify depth-first search with SPC extension (i.e. depth-first search over an SPC
enumeration tree) in finding top-k productive closed-on-the-positives. We write
x @ x′ iff x is visited before x′ is visited, and note that for two distinct patterns
in an SPC enumeration tree T , the corresponding patterns in T ’s core enumer-
ation tree Tcore are distinct, and vice versa (since T and Tcore are isomorphic).

Proposition 1. Let x∗
1 and x∗

2 be two distinct patterns in an SPC enumeration
tree T . Also let x1 and x2, respectively, be the corresponding patterns in T ’s core
enumeration tree Tcore. Then, if x1 ⊂ x2, we have x∗

1 ⊂ x∗
2 and x∗

1 @ x∗
2. ut

Proof. First, from x∗
1 = Γc(x1) and x∗

2 = Γc(x2), it is easy to see that x1 ⊂ x2 ⇒
x∗
1 ⊂ x∗

2 since x1 ⊆ x2 ⇒ Γc(x1) ⊆ Γc(x2) from the monotonicity of the closure
operator [15]. We then have x1 ⊂ x2 ⇒ x1 @ x2 since any core enumeration
tree is a part of a suffix enumeration tree. Also x∗

1 @ x∗
2 ⇔ x1 @ x2 holds since

T and Tcore are isomorphic. It immediately follows that x1 ⊂ x2 ⇒ x∗
1 @ x∗

2. ut

Proposition 2. Let x∗
1 and x∗

2 be two distinct patterns in an SPC enumeration
tree T . Also let x1 and x2, respectively, be the corresponding patterns in T ’s
core enumeration tree Tcore. Also suppose that x1 and x2 are not subsets of each
other. Then, x∗

1 ⊂ x∗
2 ⇒ x∗

1 @ x∗
2. ut
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Proof. We prove this by contraposition. First assume that x∗
1 A x∗

2 and equiva-
lently x1 A x2. Also consider the common suffix y of x1 and x2. Furthermore,
let x (resp. x′) be the maximum item w.r.t. ≺ in x1 \ y (resp. x2 \ y). Then,
we necessarily have x′ ≺ x since x1 and x2 are not subsets of each other, and
x2 @ x1. From Condition (iii) of SPC extension, Γc({x′} ∪ y) never contains
x, and accordingly neither does x∗

2 (= Γc(x2)). On the contrary, x∗
1 (= Γc(x1))

always contains x since x is its core item. Therefore, x∗
1 can never be a subset

of x∗
2. Now we have x∗

1 ⊂ x∗
2 ⇒ x∗

1 @ x∗
2. ut

Proposition 3. When a pattern x is visited in a depth-first search with SPC
extension, all of x’s sub-patterns have already been visited. ut

Proof. It is sufficient to show that x∗
1 ⊂ x∗

2 ⇒ x∗
1 @ x∗

2, where x
∗
1 and x∗

2 be two
distinct patterns in an SPC enumeration tree, say T . Here we first assume that
x∗
1 ⊂ x∗

2. Also let x1 and x2, respectively, be the corresponding patterns in T ’s
core enumeration tree Tcore. Then, we consider three exhaustive cases: (1) x1 ⊃
x2, (2) x1 ⊂ x2, and (3) x1 and x2 are not subsets of each other. The first case
is incompatible with the assumption x∗

1 ⊂ x∗
2 since x2 ⊂ x1 ⇒ x∗

2 ⊂ x∗
1 from

Proposition 1. In the second case, we have x∗
1 @ x∗

2 again from Proposition 1.
In the last case, we also have x∗

1 @ x∗
2 from Proposition 2. ut

Now, as described in Section 2.5, we can filter out a new pattern x immedi-
ately if x is weaker than some existing pattern in the candidate list. So the size
of the list is kept being k except when there are ties at the bottom.7

3.3 Algorithm Description

In this subsection, we present the proposed algorithm for finding top-k produc-
tive closed-on-the-positives. First, we introduce four global variables c, k, σmin

and L, which stand for the class of interest, the number of patterns to be output,
the minimum support and the candidate list, respectively. The values of c and k
are given by the user. On the other hand, σmin and L are respectively initialized
as 1/|Dc| and ∅. The total order ≺ among items is considered as a descending
order of the relevance score Rc in use.8 The central procedure is Grow, shown
in Algorithm 1, and we call Grow(∅) to run the algorithm. After termination,
the final top-k patterns are stored in the candidate list L.

Given the current pattern x, Grow(x) works as follows. First, we compute
the set B of items that satisfy Conditions (i) and (ii) of SPC extension (Line 1).
Note that B contains all possible items if x = ∅. Then, we try to branch by each
item x in B ascendingly w.r.t. ≺ (Line 2). We create a new pattern x∗ (Line 4)
with pruning by the minimum support (Line 3) and by Condition (iii) of SPC
extension (Line 5). After computing the relevance score of x∗ (Line 6), we add

7 Of course, such ties do not affect the minimum support threshold to be raised.
8 This total ordering has a preferable side-effect that, as is seen in Fig. 1 (right) and
Fig. 2 (top-right), we try the combinations of promising items earlier in a suffix/SPC
enumeration tree and hence the minimum support tends to be raised quickly.
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Algorithm 1 Grow(x)

Require: x: the current pattern
1: B := {x | x 6∈ x and x is a predecessor of the last core item added into x}
2: for each x ∈ B enumerated in the ascending order of ≺ do
3: if p({x} ∪ x | c) < σmin then continue
4: x∗ := Γc({x} ∪ x)
5: if Σx(x

∗) 6= Σx(x) then continue
6: Compute Rc(x

∗)
7: if x∗ is not weaker than any patterns in L then
8: Insert x∗ into L following the descending order of Rc

9: if |L| ≥ k then
10: Remove the patterns with the score below the k-th pattern’s score from L
11: σmin := max{Uc(z), σmin}, where z is the k-th pattern in L
12: end if
13: end if
14: Call Grow(x∗) if x is not prunably weaker than any patterns in L
15: end for

x∗ into the candidate list L if x∗ is not weaker than any existing pattern in L
(Lines 7–13). If L is full, we replace with x∗ the patterns that are less relevant
than x∗ (Line 10) and update the minimum support (Line 11). Here Uc(z) is a
new threshold based on z’s score (Section 2.4). Finally, for x∗ having passed the
filter on prunable weakness, we call Grow recursively (line 14).

4 Experimental results

We conducted an experiment to confirm the efficiency of the proposed algorithm.
The datasets are originally collected in UCI Machine Learning Repository and
we used a preprocessed version available from http://dtai.cs.kuleuven.be/

CP4IM/datasets/. The statistics are summarized in Table 1.
In the experiment, we compare the search strategies described in Section 2.5,

i.e. breadth-first search (BFS), depth-first search over a prefix/suffix enumeration
tree (DFS(Prefix)/DFS(Suffix)) and iterative deepening (ID) recently proposed by
Grosskreutz et al. [6].9 We specified k = 10 as the number of productive closed-
on-the-positives to be found. F-score is used as the relevance score. The result
is shown in Fig. 3. The y-axis indicates the number of visited nodes, which
equals the number of times the closure operator was applied. The measurements
at the y-axis are presented in logarithmic scale. From Fig. 3, we first see that
DFS(Suffix) (the proposed method) outperforms DFS(Prefix) for most of datasets.
In particular, DFS(Prefix) works poorly for german-credit. In addition, as stated

9 We also implemented an optimization described in Section 5.1 of [6], where we skip
the depths for which no patterns exist by keeping track the length of the short-
est pattern exceeding the current depth at each iteration. All implementations are
written in Java, and for comparison, we did not use elaborate data structures like
FP-trees but pseudo-projection-style databases [16].
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Table 1. Statistics on the datasets. “#Trs.” indicates the number of transactions.

Dataset #Trs. #Items Dataset #Trs. #Items Dataset #Trs. #Items
anneal 812 93 hypothyroid 3,247 88 splice-1 3,190 287
audiology 216 148 kr-vs-kp 3,196 73 tic-tac-toe 958 27
australian-credit 653 125 lymph 148 68 vote 435 48
german-credit 1,000 112 mushroom 8,124 119 zoo-1 101 36
heart-cleveland 296 95 primary-tumor 336 31
hepatitis 137 68 soybean 630 50
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Fig. 3. The result of a comparison among search strategies.

before, the overhead of iterative deepening is not ignorable in this experiment.
On comparison between BFS and DFS(Suffix), we can say that for some small
datasets like tic-tac-toe, BFS works better than DFS(Suffix), but for the datasets
where the search is costly, DFS(Suffix) outperforms BFS (remind here that the
y-axis is in logarithmic scale). Totally, the proposed method DFS(Suffix) stably
runs fast in comparison with the other search strategies.

5 Conclusion

In this paper, we proposed an efficient exact algorithm for finding top-k dis-
criminative patterns that are not redundant and would be of value at a later
step in prediction or knowledge discovery. Redundancy among discriminative
patterns are eliminated by two set-inclusion-based constraints, closedness and
productivity. Such constraints are efficiently tested with suffix-preserving clo-
sure extension under dual-monotonic relevance scores. We showed formally and
empirically that the proposed algorithm successfully keeps compact the list of
candidate top-k patterns during the search and consequently high the minimum
support threshold. In future, we would like to extend the proposed algorithm for
more complex data such as sequences.
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11. Kralj Novak, P., Lavrač, N., Webb, G.I.: Supervised descriptive rule discovery:
a unifying survey of contrast set, emerging pattern and subgroup mining. J. of
Machine Learning Research 10, 377–403 (2009)
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