
Depth-first Traversal over a Mirrored Space 
for Non-redundant Discriminative Itemsets

Yoshitaka Kameya and Hiroki Asaoka
Meijo University

1DaWaK-13



Outline
• Background

• Details of our proposed method

• Experiments

DaWaK-13 2



Outline
• Background

• Details of our proposed method

• Experiments

DaWaK-13 3



Background: Discriminative patterns

• Discriminative patterns:
– Show differences between two groups (classes)

– Used for:
• Characterizing the class of interest
• Building more precise classifiers

• We focus on top-k mining

DaWaK-13 4

milk=True  aquatic=False 

 +

Discriminative pattern x 

Class c of interest
–:Negative class

+:Positive class



Problem: Redundancy among patterns
Item i is significantly relevant to the target class
 Patterns containing i tend to occupy

the top-k list

Background: Coping with redundancy (1)

DaWaK-13 5

Class Transaction

+ {A, B, D, E}

+ {A, B, C, D, E}

+ {A, C, D, E}

+ {A, B, C}

+ {B}

– {A, B, D, E}

– {B, C, D}

– {A, D, E}

– {B, D, E}

– {C}

Top-10 patterns (including ties)

Dataset

Class Transaction

+ {A, B, D, E}

+ {A, B, C, D, E}

+ {A, C, D, E}

+ {A, B, C}

+ {B}

– {A, B, D, E}

– {B, C, D}

– {A, D, E}

– {B, D, E}

– {C}

Support over the positive transactions
Relevance score to the positive class

Rank Pattern
Positive
Support

F-score

1 {A, C} 3 0.75
2 {A} 4 0.73
3 {B} 4 0.67
3 {A, B} 3 0.67
5 {A, D} 3 0.6
5 {A, E} 3 0.6
5 {A, E, D} 3 0.6
5 {C} 3 0.6
9 {A, B, C} 2 0.57
9 {A, C, D} 2 0.57
9 {A, C, E} 2 0.57
9 {A, C, E, D} 2 0.57
9 {C, E} 2 0.57
9 {C, E, D} 2 0.57

Rank Pattern
Positive
Support

F-score

1 {A, C} 3 0.75
2 {A} 4 0.73
3 {B} 4 0.67
3 {A, B} 3 0.67
5 {A, D} 3 0.6
5 {A, E} 3 0.6
5 {A, E, D} 3 0.6
5 {C} 3 0.6
9 {A, B, C} 2 0.57
9 {A, C, D} 2 0.57
9 {A, C, E} 2 0.57
9 {A, C, E, D} 2 0.57
9 {C, E} 2 0.57
9 {C, E, D} 2 0.57

Positive
Transactions

Negative
Transactions



Background: Coping with redundancy (2)

• Set-inclusion-based constraints
– Closedness [Pasquier+ 99]

– Productivity [Bayardo 00][Webb 07]

DaWaK-13 6

Class Transaction

+ {A, B, D, E}

+ {A, B, C, D, E}

+ {A, C, D, E}

+ {A, B, C}

+ {B}

– {A, B, D, E}

– {B, C, D}

– {A, D, E}

– {B, D, E}

– {C}

Rank Pattern
Positive
Support

F-score

1 {A, C} 3 0.75

2 {A} 4 0.73

3 {B} 4 0.67

3 {A, B} 3 0.67

5 {A, D} 3 0.6

5 {A, E} 3 0.6

5 {A, E, D} 3 0.6

5 {C} 3 0.6

9 {A, B, C} 2 0.57

9 {A, C, D} 2 0.57

9 {A, C, E} 2 0.57

9 {A, C, E, D} 2 0.57

9 {C, E} 2 0.57

9 {C, E, D} 2 0.57

Rank Pattern
Positive
Support

F-score

1 {A, C} 3 0.75

2 {A} 4 0.73

3 {B} 4 0.67

only with closedness

without closedness
or productivity

with closedness
& productivity

Rank Pattern
Positive
Support

F-score

1 {A, C} 3 0.75

2 {A} 4 0.73

3 {B} 4 0.67

3 {A, B} 3 0.67

5 {A, D} 3 0.6

5 {A, E} 3 0.6

5 {A, E, D} 3 0.6

5 {C} 3 0.6

9 {A, B, C} 2 0.57

9 {A, C, D} 2 0.57

9 {A, C, E} 2 0.57

9 {A, C, E, D} 2 0.57

9 {C, E} 2 0.57

9 {C, E, D} 2 0.57

Rank Pattern
Positive
Support

F-score

1 {A, C} 3 0.75

2 {A} 4 0.73

3 {B} 4 0.67

3 {A, B} 3 0.67

5 {A, E, D} 3 0.6

6 {A, B, C} 2 0.57

6 {A, C, E, D} 2 0.57

8 {A, B, E, D} 2 0.5

9 {A, B, C, E, D} 1 0.33

Rank Pattern
Positive
Support

F-score

1 {A, C} 3 0.75

2 {A} 4 0.73

3 {B} 4 0.67

3 {A, B} 3 0.67

5 {A, E, D} 3 0.6

6 {A, B, C} 2 0.57

6 {A, C, E, D} 2 0.57

8 {A, B, E, D} 2 0.5

9 {A, B, C, E, D} 1 0.33

Closedness:
With the same positive support,
pick the super-pattern

Productivity:
Remove super-patterns
with smaller relevance scores



Background: Suffix enumeration trees
• We test:

– Closedness by “on-the-fly” closure check
– Productivity over suffix enumeration trees [Kameya+ SDM12]

DaWaK-13 7



{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

{A,B,C} {A,B,C} {A,C,D}

{A,B,C,D}

{B,C,D}

Prefix enumeration tree
(traditional search space)

Suffix enumeration tree
(mirrored search space)



{D}{C}{B}{A}

{C,D}{B,D}{A,D}{B,C}{A,C}{A,B}

{B,C,D}{A,C,D}{A,B,D}

{A,B,C,D}

{A,B,C}

Immediately judged as
non-productive 
even in depth-first search 

F-score
0.6

0.7 0.65

0.7

0.8

0.75

0.9

Uncertain at this moment

F-score
0.6

0.7
0.65

0.7

0.8

0.75

0.9

Memory-efficient (depth-first) search
is possible with safe productivity tests



Our goal
• To propose an efficient, exact method for finding

top-k productive “closed-on-the-positives”

• Contributions:

– Dual-monotonicy

• A generalized condition on relevance scores

• Gives a theoretical basis

– Suffix-preserving closure extension

• A mirrored operation of the one used in LCM [Uno+ DS04]

• Can work with closedness and productivity smoothly
at the same time

DaWaK-13 8

Closed patterns
over the positive transactions



Outline
 Background

• Details of our proposed method

– Dual-monotonicity

– Suffix-preserving closure extension

• Experiments

DaWaK-13 9



Outline
 Background

• Details of our proposed method

– Dual-monotonicity

– Suffix-preserving closure extension

• Experiments

DaWaK-13 10



• Discriminative pattern x is often evaluated under a 
relevance score to the class c of interest 
– Confidence/PMI
– Support Difference/WRA/Leverage
– c2

– F-score/Dice/Jaccard
– ...

• Computational difficulty:
Most of popular relevance scores do not satisfy
anti-monotonicity (the Apriori property)

 Standard technique: Branch-and-bound search 
[Morishita+ 00][Zimmermann+ 09][Nijssen+ 09]

Dual-monotonicity: Preliminaries (1)

DaWaK-13 11

c

These scores measure the 
distributional overlap between x and c

cx
good

x
bad



Dual-monotonicity: Preliminaries (2)
• ROC analysis of a relevance score Rc

– Confusion matrix for a rule “x c”:

– Any relevance score Rc can be seen as a function of
true positive rate (TPR) p(x | c) and
false positive rate (FPR) p(x | c)

DaWaK-13

c c
x True positive: p(c, x) False positive: p(c, x)

x False negative: p(c, x) True negative: p(c, x)

12

F-score’s
ROC space

Good patterns

Bad patterns

x

x’



Dual-monotonicity: Definition
Relevance score Rc is dual-monotonic
Rc(x) is monotonically increasing w.r.t. TPR p(x | c) and

Rc(x) is monotonically decreasing w.r.t. FPR p(x | c) 
(wherever TPR  FPR) 

Property:
Branch-and-bound (B&B) pruning is safe under
dual-monotonicity
 The applicablility of B&B pruning is enlarged

13

Increasing

Increasing

DaWaK-13

Dual-monotonicity is more general
than convexity [Morishita+ 00][Nijssen+ 09]

(e.g. F-score does not satisfy
convexity but dual-monotonicity) 

F-score



Dual-monotonicity: Closed patterns

• We focus only on “closed-on-the-positives”

• Such closed patterns are beneficial in:

– Efficiency:

• Some set of patterns (“generators”)
are compressed into a closed pattern

• Search space is
(possibly exponentially) reduced

– Relevance:
Under a dual-monotonic score,
closed-on-the-positives are
no less relevant than their generators
[Soulet+ PAKDD04]

DaWaK-13 14

Pattern
Positive
Support

F-score
Closed
on the

positives?
{A, C} 3 0.75 Yes
{A} 4 0.73 Yes
{B} 4 0.67 Yes
{A, B} 3 0.67 Yes
{A, D} 3 0.6 No
{A, E} 3 0.6 No
{A, E, D} 3 0.6 Yes
{C} 3 0.6 No
{A, B, C} 2 0.57 Yes
{A, C, D} 2 0.57 No
{A, C, E} 2 0.57 No
{A, C, E, D} 2 0.57 Yes
{C, E} 2 0.57 No
{C, E, D} 2 0.57 No

Closed patterns
over the positive transactions



Outline
 Background

• Details of our proposed method

Dual-monotonicity

– Suffix-preserving closure extension

• Experiments

DaWaK-13 15



SPC extension: Background

• Suffix-preserving closure (SPC) extension

– A mirrored operation of the one used in LCM [Uno+ DS04]

– Only generates closed patterns from closed patterns

 We need not maintain the top-k list
for closedness

– Ensures the depth-first traversal over a space
like a suffix enumeration tree

 This makes it easy to maintain the top-k list
for productivity

DaWaK-13 16



{D}{C}{B}{A}

{C,D}{B,D}{A,D}{B,C}{A,C}{A,B}

{B,C,D}{A,C,D}{A,B,D}

{A,B,C,D}

{A,B,C}



SPC extension: Illustrated example (1)
Preparation:

Get the item order and reorder items in the transactions

DaWaK-13 17

Class Transaction

+ {A, B, D, E}

+ {A, B, C, D, E}

+ {A, C, D, E}

+ {A, B, C}

+ {B}

– {A, B, D, E}

– {B, C, D}

– {A, D, E}

– {B, D, E}

– {C}

Item F-score

A 0.78

B 0.63

C 0.57

D 0.46

E 0.51

Item order:
A < B < C < E < D

Original dataset:

Class Transaction

+ {A, B, E, D}

+ {A, B, C, E, D}

+ {A, C, E, D}

+ {A, B, C}

+ {B}

– {A, B, E, D}

– {B, C, D}

– {A, E, D}

– {B, E, D}

– {C}

Modified dataset:

(young) (old)

We use negative transactions only when 
computing relevance scores
(Details are omitted)

Class Transaction

+ {A, B, E, D}

+ {A, B, C, E, D}

+ {A, C, E, D}

+ {A, B, C}

+ {B}

– {A, B, E, D}

– {B, C, D}

– {A, E, D}

– {B, E, D}

– {C}



Iteration:
Add younger items one by one to the parent pattern
(such added items are called “core items”)

Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

SPC extension: Illustrated example (2)

DaWaK-13 18

Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

Item order:
A < B < C < E < D



{A}

A is a core item
in {A}

The intersection
of the transactions
including {A} is {A}

 {A} is closed
on the positives

No younger item than A
 We cannot add

any more items

(young)               (old)



SPC extension: Illustrated example (3)
Iteration:

Add younger items one by one to the parent pattern
(such added items are called “core items”)

DaWaK-13 19



{A} {B}

Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

The intersection
of the transactions
including {B} is {B}

 {B} is closed
on the positives

We can add a 
younger item A
to {B}

Item order:
A < B < C < E < D

(young)               (old)



SPC extension: Illustrated example (4)
Iteration:

Add younger items one by one to the parent pattern
(such added items are called “core items”)

DaWaK-13 20



{A} {B}

{A, B}

Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

{A, B} is closed
on the positives

No younger item 
to be added

Item order:
A < B < C < E < D

(young)               (old)



SPC extension: Illustrated example (5)
Iteration:

Add younger items one by one to the parent pattern
(such added items are called “core items”)

DaWaK-13 21



{A} {B}

{A, B}

{A, C}

Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

A always accompanies
the added item C
 {A, C} is closed on

the positives
B is younger than C, 
and the only item 
that can be added

Item order:
A < B < C < E < D

(young)               (old)



SPC extension: Illustrated example (6)
Iteration:

Add younger items one by one to the parent pattern
(such added items are called “core items”)

DaWaK-13 22



{A} {B}

{A, B}

{A, C}

{A, B, C}

Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

{A, B, C} is closed
on the positives

Item order:
A < B < C < E < D

(young)               (old)



SPC extension: Illustrated example (7)
Iteration:

Add younger items one by one to the parent pattern
(such added items are called “core items”)

DaWaK-13 23



{A} {B}

{A, B}

{A, C} {A, E, D}

{A, B, C}

Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

Older item D accompanies
the added item E
 Such extension

is not an SPC extension!

Item order:
A < B < C < E < D

(young)               (old)

Pruned



SPC extension: Illustrated example (8)
Iteration:

Add younger items one by one to the parent pattern
(such added items are called “core items”)

DaWaK-13 24



{A} {B}

{A, B}

{A, C} {A, E, D}

{A, B, C}

Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

Accompanying items
are all younger than
the added item D
 Such extension

is an SPC extension

Item order:
A < B < C < E < D

(young)               (old)



SPC extension: Illustrated example (9)
Iteration:

Add younger items one by one to the parent pattern
(such added items are called “core items”)

DaWaK-13 25



{A} {B}

{A, B}

{A, C} {A, E, D}

{A, B, C} {A, B, E, D} {A, C, E, D}

{A, B, C, E, D}

Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

Item order:
A < B < C < E < D

(young)               (old)



SPC extension: Justification

DaWaK-13 26



{A}
{B}

{A, B}

{A, C}
{A, E, D}

{A, B, C}

{A, B, E, D} {A, C, E, D}

{A, B, C, E, D}



{A} {B}

{A, B}

{C} {D}

{B, C} {B, D} {C, D}

{B, C, D}



{D}{C}{B}{A}

{C,D}{B,D}{A,D}{B,C}{A,C}{A,B}

{B,C,D}{A,C,D}{A,B,D}

{A,B,C,D}

{A,B,C}

Extract
core items

SPC enumeration tree: Search tree formed by SPC extension

Core enumeration tree

Suffix enumeration tree

We can inherit
the property on visiting order
from suffix enumeration trees

 Safe productivity tests



Outline
 Background

Details of our proposed method

Dual-monotonicity

Suffix-preserving closure extension

• Experiments

DaWaK-13 27



Experiments: Settings
• 16 datasets from UCI ML Repository
• We used a preprocessed version available from 

http://dtai.cs.kuleuven.be/CP4IM/datasets/

• Comparison among four search strategies:
– Breadth-first

– Depth-first over prefix enumeration trees

– Depth-first over suffix enumeration trees (Our proposal)

– Iterative deepening [Grosskreutz+ ECML/PKDD11]
DaWaK-13 28

Dataset #Trans. #Items

anneal 812 93

audiology 216 148

australian-credit 653 125

german-credit 1,000 112

heart-cleveland 296 95

hepatitis 137 68

hypothyroid 3,247 88

kr-vs-kp 3,196 73

Dataset #Trans. Items

lymph 148 68

mushroom 8,124 110

primary-tumor 336 31

soybean 630 50

splice-1 3,190 287

tic-tac-toe 958 28

vote 435 48

zoo-1 101 36



Experiments: Search Strategy

DaWaK-13 29

#visited
patterns

(in log scale)

• DFS (suffix) runs fast on average, compared to BFS 
and DFS (prefix)

• The overhead of iterative deepening is not ignorable

More 
efficient



Summary

• We proposed an efficent and exact method for 
finding top-k productive “closed-on-the-positives”

– Dual-monotonicity

– Suffix-preserving closure extension

• Experimental results show the efficiency of the 
proposed method

DaWaK-13 30

• More sophisticated implementation (e.g. FP-trees)

• Extension to more complex patterns (e.g. sequences)

Future work


