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Background: Discriminative patterns

• Discriminative patterns:
– Show differences between two groups (classes)

– Used for:
• Characterizing the class of interest
• Building more precise classifiers

• We focus on top-k mining
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milk=True  aquatic=False 

 +

Discriminative pattern x 

Class c of interest
–:Negative class

+:Positive class



Problem: Redundancy among patterns
Item i is significantly relevant to the target class
 Patterns containing i tend to occupy

the top-k list

Background: Coping with redundancy (1)

DaWaK-13 5

Class Transaction

+ {A, B, D, E}

+ {A, B, C, D, E}

+ {A, C, D, E}

+ {A, B, C}

+ {B}

– {A, B, D, E}

– {B, C, D}

– {A, D, E}

– {B, D, E}

– {C}

Top-10 patterns (including ties)

Dataset

Class Transaction

+ {A, B, D, E}

+ {A, B, C, D, E}

+ {A, C, D, E}

+ {A, B, C}

+ {B}

– {A, B, D, E}

– {B, C, D}

– {A, D, E}

– {B, D, E}

– {C}

Support over the positive transactions
Relevance score to the positive class

Rank Pattern
Positive
Support

F-score

1 {A, C} 3 0.75
2 {A} 4 0.73
3 {B} 4 0.67
3 {A, B} 3 0.67
5 {A, D} 3 0.6
5 {A, E} 3 0.6
5 {A, E, D} 3 0.6
5 {C} 3 0.6
9 {A, B, C} 2 0.57
9 {A, C, D} 2 0.57
9 {A, C, E} 2 0.57
9 {A, C, E, D} 2 0.57
9 {C, E} 2 0.57
9 {C, E, D} 2 0.57

Rank Pattern
Positive
Support

F-score

1 {A, C} 3 0.75
2 {A} 4 0.73
3 {B} 4 0.67
3 {A, B} 3 0.67
5 {A, D} 3 0.6
5 {A, E} 3 0.6
5 {A, E, D} 3 0.6
5 {C} 3 0.6
9 {A, B, C} 2 0.57
9 {A, C, D} 2 0.57
9 {A, C, E} 2 0.57
9 {A, C, E, D} 2 0.57
9 {C, E} 2 0.57
9 {C, E, D} 2 0.57

Positive
Transactions

Negative
Transactions



Background: Coping with redundancy (2)

• Set-inclusion-based constraints
– Closedness [Pasquier+ 99]

– Productivity [Bayardo 00][Webb 07]
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Class Transaction

+ {A, B, D, E}

+ {A, B, C, D, E}

+ {A, C, D, E}

+ {A, B, C}

+ {B}

– {A, B, D, E}

– {B, C, D}

– {A, D, E}

– {B, D, E}

– {C}

Rank Pattern
Positive
Support

F-score

1 {A, C} 3 0.75

2 {A} 4 0.73

3 {B} 4 0.67

3 {A, B} 3 0.67

5 {A, D} 3 0.6

5 {A, E} 3 0.6

5 {A, E, D} 3 0.6

5 {C} 3 0.6

9 {A, B, C} 2 0.57

9 {A, C, D} 2 0.57

9 {A, C, E} 2 0.57

9 {A, C, E, D} 2 0.57

9 {C, E} 2 0.57

9 {C, E, D} 2 0.57

Rank Pattern
Positive
Support

F-score

1 {A, C} 3 0.75

2 {A} 4 0.73

3 {B} 4 0.67

only with closedness

without closedness
or productivity

with closedness
& productivity

Rank Pattern
Positive
Support

F-score

1 {A, C} 3 0.75

2 {A} 4 0.73

3 {B} 4 0.67

3 {A, B} 3 0.67

5 {A, D} 3 0.6

5 {A, E} 3 0.6

5 {A, E, D} 3 0.6

5 {C} 3 0.6

9 {A, B, C} 2 0.57

9 {A, C, D} 2 0.57

9 {A, C, E} 2 0.57

9 {A, C, E, D} 2 0.57

9 {C, E} 2 0.57

9 {C, E, D} 2 0.57

Rank Pattern
Positive
Support

F-score

1 {A, C} 3 0.75

2 {A} 4 0.73

3 {B} 4 0.67

3 {A, B} 3 0.67

5 {A, E, D} 3 0.6

6 {A, B, C} 2 0.57

6 {A, C, E, D} 2 0.57

8 {A, B, E, D} 2 0.5

9 {A, B, C, E, D} 1 0.33

Rank Pattern
Positive
Support

F-score

1 {A, C} 3 0.75

2 {A} 4 0.73

3 {B} 4 0.67

3 {A, B} 3 0.67

5 {A, E, D} 3 0.6

6 {A, B, C} 2 0.57

6 {A, C, E, D} 2 0.57

8 {A, B, E, D} 2 0.5

9 {A, B, C, E, D} 1 0.33

Closedness:
With the same positive support,
pick the super-pattern

Productivity:
Remove super-patterns
with smaller relevance scores



Background: Suffix enumeration trees
• We test:

– Closedness by “on-the-fly” closure check
– Productivity over suffix enumeration trees [Kameya+ SDM12]
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{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

{A,B,C} {A,B,C} {A,C,D}

{A,B,C,D}

{B,C,D}

Prefix enumeration tree
(traditional search space)

Suffix enumeration tree
(mirrored search space)



{D}{C}{B}{A}

{C,D}{B,D}{A,D}{B,C}{A,C}{A,B}

{B,C,D}{A,C,D}{A,B,D}

{A,B,C,D}

{A,B,C}

Immediately judged as
non-productive 
even in depth-first search 

F-score
0.6

0.7 0.65

0.7

0.8

0.75

0.9

Uncertain at this moment

F-score
0.6

0.7
0.65

0.7

0.8

0.75

0.9

Memory-efficient (depth-first) search
is possible with safe productivity tests



Our goal
• To propose an efficient, exact method for finding

top-k productive “closed-on-the-positives”

• Contributions:

– Dual-monotonicy

• A generalized condition on relevance scores

• Gives a theoretical basis

– Suffix-preserving closure extension

• A mirrored operation of the one used in LCM [Uno+ DS04]

• Can work with closedness and productivity smoothly
at the same time
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Closed patterns
over the positive transactions
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• Discriminative pattern x is often evaluated under a 
relevance score to the class c of interest 
– Confidence/PMI
– Support Difference/WRA/Leverage
– c2

– F-score/Dice/Jaccard
– ...

• Computational difficulty:
Most of popular relevance scores do not satisfy
anti-monotonicity (the Apriori property)

 Standard technique: Branch-and-bound search 
[Morishita+ 00][Zimmermann+ 09][Nijssen+ 09]

Dual-monotonicity: Preliminaries (1)
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c

These scores measure the 
distributional overlap between x and c

cx
good

x
bad



Dual-monotonicity: Preliminaries (2)
• ROC analysis of a relevance score Rc

– Confusion matrix for a rule “x c”:

– Any relevance score Rc can be seen as a function of
true positive rate (TPR) p(x | c) and
false positive rate (FPR) p(x | c)

DaWaK-13

c c
x True positive: p(c, x) False positive: p(c, x)

x False negative: p(c, x) True negative: p(c, x)

12

F-score’s
ROC space

Good patterns

Bad patterns

x

x’



Dual-monotonicity: Definition
Relevance score Rc is dual-monotonic
Rc(x) is monotonically increasing w.r.t. TPR p(x | c) and

Rc(x) is monotonically decreasing w.r.t. FPR p(x | c) 
(wherever TPR  FPR) 

Property:
Branch-and-bound (B&B) pruning is safe under
dual-monotonicity
 The applicablility of B&B pruning is enlarged

13

Increasing

Increasing
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Dual-monotonicity is more general
than convexity [Morishita+ 00][Nijssen+ 09]

(e.g. F-score does not satisfy
convexity but dual-monotonicity) 

F-score



Dual-monotonicity: Closed patterns

• We focus only on “closed-on-the-positives”

• Such closed patterns are beneficial in:

– Efficiency:

• Some set of patterns (“generators”)
are compressed into a closed pattern

• Search space is
(possibly exponentially) reduced

– Relevance:
Under a dual-monotonic score,
closed-on-the-positives are
no less relevant than their generators
[Soulet+ PAKDD04]
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Pattern
Positive
Support

F-score
Closed
on the

positives?
{A, C} 3 0.75 Yes
{A} 4 0.73 Yes
{B} 4 0.67 Yes
{A, B} 3 0.67 Yes
{A, D} 3 0.6 No
{A, E} 3 0.6 No
{A, E, D} 3 0.6 Yes
{C} 3 0.6 No
{A, B, C} 2 0.57 Yes
{A, C, D} 2 0.57 No
{A, C, E} 2 0.57 No
{A, C, E, D} 2 0.57 Yes
{C, E} 2 0.57 No
{C, E, D} 2 0.57 No

Closed patterns
over the positive transactions
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SPC extension: Background

• Suffix-preserving closure (SPC) extension

– A mirrored operation of the one used in LCM [Uno+ DS04]

– Only generates closed patterns from closed patterns

 We need not maintain the top-k list
for closedness

– Ensures the depth-first traversal over a space
like a suffix enumeration tree

 This makes it easy to maintain the top-k list
for productivity
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{D}{C}{B}{A}

{C,D}{B,D}{A,D}{B,C}{A,C}{A,B}

{B,C,D}{A,C,D}{A,B,D}

{A,B,C,D}

{A,B,C}



SPC extension: Illustrated example (1)
Preparation:

Get the item order and reorder items in the transactions
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Class Transaction

+ {A, B, D, E}

+ {A, B, C, D, E}

+ {A, C, D, E}

+ {A, B, C}

+ {B}

– {A, B, D, E}

– {B, C, D}

– {A, D, E}

– {B, D, E}

– {C}

Item F-score

A 0.78

B 0.63

C 0.57

D 0.46

E 0.51

Item order:
A < B < C < E < D

Original dataset:

Class Transaction

+ {A, B, E, D}

+ {A, B, C, E, D}

+ {A, C, E, D}

+ {A, B, C}

+ {B}

– {A, B, E, D}

– {B, C, D}

– {A, E, D}

– {B, E, D}

– {C}

Modified dataset:

(young) (old)

We use negative transactions only when 
computing relevance scores
(Details are omitted)

Class Transaction

+ {A, B, E, D}

+ {A, B, C, E, D}

+ {A, C, E, D}

+ {A, B, C}

+ {B}

– {A, B, E, D}

– {B, C, D}

– {A, E, D}

– {B, E, D}

– {C}



Iteration:
Add younger items one by one to the parent pattern
(such added items are called “core items”)

Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

SPC extension: Illustrated example (2)
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Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

Item order:
A < B < C < E < D



{A}

A is a core item
in {A}

The intersection
of the transactions
including {A} is {A}

 {A} is closed
on the positives

No younger item than A
 We cannot add

any more items

(young)               (old)



SPC extension: Illustrated example (3)
Iteration:

Add younger items one by one to the parent pattern
(such added items are called “core items”)
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{A} {B}

Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

The intersection
of the transactions
including {B} is {B}

 {B} is closed
on the positives

We can add a 
younger item A
to {B}

Item order:
A < B < C < E < D

(young)               (old)



SPC extension: Illustrated example (4)
Iteration:

Add younger items one by one to the parent pattern
(such added items are called “core items”)
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{A} {B}

{A, B}

Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

{A, B} is closed
on the positives

No younger item 
to be added

Item order:
A < B < C < E < D

(young)               (old)



SPC extension: Illustrated example (5)
Iteration:

Add younger items one by one to the parent pattern
(such added items are called “core items”)
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{A} {B}

{A, B}

{A, C}

Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

A always accompanies
the added item C
 {A, C} is closed on

the positives
B is younger than C, 
and the only item 
that can be added

Item order:
A < B < C < E < D

(young)               (old)



SPC extension: Illustrated example (6)
Iteration:

Add younger items one by one to the parent pattern
(such added items are called “core items”)
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{A} {B}

{A, B}

{A, C}

{A, B, C}

Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

{A, B, C} is closed
on the positives

Item order:
A < B < C < E < D

(young)               (old)



SPC extension: Illustrated example (7)
Iteration:

Add younger items one by one to the parent pattern
(such added items are called “core items”)
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{A} {B}

{A, B}

{A, C} {A, E, D}

{A, B, C}

Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

Older item D accompanies
the added item E
 Such extension

is not an SPC extension!

Item order:
A < B < C < E < D

(young)               (old)

Pruned



SPC extension: Illustrated example (8)
Iteration:

Add younger items one by one to the parent pattern
(such added items are called “core items”)
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{A} {B}

{A, B}

{A, C} {A, E, D}

{A, B, C}

Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

Accompanying items
are all younger than
the added item D
 Such extension

is an SPC extension

Item order:
A < B < C < E < D

(young)               (old)



SPC extension: Illustrated example (9)
Iteration:

Add younger items one by one to the parent pattern
(such added items are called “core items”)
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{A} {B}

{A, B}

{A, C} {A, E, D}

{A, B, C} {A, B, E, D} {A, C, E, D}

{A, B, C, E, D}

Class Transaction

+ {A,B,E,D}

+ {A,B,C,E,D}

+ {A,C,E,D}

+ {A,B,C}

+ {B}

– {A,B,E,D}

– {B,C,D}

– {A,E,D}

– {B,E,D}

– {C}

Item order:
A < B < C < E < D

(young)               (old)



SPC extension: Justification
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{A}
{B}

{A, B}

{A, C}
{A, E, D}

{A, B, C}

{A, B, E, D} {A, C, E, D}

{A, B, C, E, D}



{A} {B}

{A, B}

{C} {D}

{B, C} {B, D} {C, D}

{B, C, D}



{D}{C}{B}{A}

{C,D}{B,D}{A,D}{B,C}{A,C}{A,B}

{B,C,D}{A,C,D}{A,B,D}

{A,B,C,D}

{A,B,C}

Extract
core items

SPC enumeration tree: Search tree formed by SPC extension

Core enumeration tree

Suffix enumeration tree

We can inherit
the property on visiting order
from suffix enumeration trees

 Safe productivity tests
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Experiments: Settings
• 16 datasets from UCI ML Repository
• We used a preprocessed version available from 

http://dtai.cs.kuleuven.be/CP4IM/datasets/

• Comparison among four search strategies:
– Breadth-first

– Depth-first over prefix enumeration trees

– Depth-first over suffix enumeration trees (Our proposal)

– Iterative deepening [Grosskreutz+ ECML/PKDD11]
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Dataset #Trans. #Items

anneal 812 93

audiology 216 148

australian-credit 653 125

german-credit 1,000 112

heart-cleveland 296 95

hepatitis 137 68

hypothyroid 3,247 88

kr-vs-kp 3,196 73

Dataset #Trans. Items

lymph 148 68

mushroom 8,124 110

primary-tumor 336 31

soybean 630 50

splice-1 3,190 287

tic-tac-toe 958 28

vote 435 48

zoo-1 101 36



Experiments: Search Strategy
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#visited
patterns

(in log scale)

• DFS (suffix) runs fast on average, compared to BFS 
and DFS (prefix)

• The overhead of iterative deepening is not ignorable

More 
efficient



Summary

• We proposed an efficent and exact method for 
finding top-k productive “closed-on-the-positives”

– Dual-monotonicity

– Suffix-preserving closure extension

• Experimental results show the efficiency of the 
proposed method
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• More sophisticated implementation (e.g. FP-trees)

• Extension to more complex patterns (e.g. sequences)

Future work


