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Abstract—As stated in the building block hypothesis, we
expect genetic algorithms (GAs) to create building blocks (BBs)
and combine them appropriately in the evolutionary process.
However, such BBs are often destroyed by unwanted crossovers,
soon after they are created. Also, we may suffer from a “loose”
encoding of chromosomes since BBs are in general unknown.
In this paper, we propose a framework named GAP (GA with
patterns), in which key patterns are extracted from significantly
“good” chromosomes and protect such key patterns against
unwanted crossover. GAP is applicable to optimization problems
with fixed-point encoding and permutation encoding in a uniform
fashion, and unlike perturbation-based linkage learning methods,
GAP does not require extra fitness evaluations. Experimental
results with the royal road problems and traveling salesman
problems show the performance improvement of GAP over
standard GAs.

I. INTRODUCTION

As stated in the building block hypothesis [1], [2], we expect
genetic algorithms (GAs) to create building blocks (BBs) and
combine them appropriately in the evolutionary process. How-
ever, such BBs are often destroyed by unwanted crossovers,
soon after they are created. Also, since BBs are in general
unknown, we may have a “loose” encoding of chromosomes,
where some BBs are scattered over a chromosome.

To cope with this difficulty, in the literature, linkage learning
methods have been developed intensively, and they are classi-
fied into three categories [3], [4]: (1) linkage adaptation meth-
ods such as messy GA [5] and LLGA [6], (2) perturbation-
based linkage identification methods such as LINC [7],
LIMD [3], D5 [8] and ILI [9], and (3) model-building methods
such as BOA [10] and DSMGA [4]. These linkage learning
methods basically assume a fixed-position (binary) encoding
of chromosomes and BBs are identified/protected in a locus-
wise fashion. EHBSA [11], a probabilistic model-building
GA based on a Markov chain, can exceptionally deal with
permutation encoding.

In this paper, we propose a framework named GAP (GA
with patterns), which can be viewed as a successor of Gero
and Kazakov’s genetic engineering approach [12], [13]. That
is, in GAP, we extract key patterns (substrings with gaps)
from significantly “good” chromosomes and protect such key
patterns against unwanted crossover. What is new in GAP
is the use of sequential pattern mining, which enables us to
handle permutation encoding, without repair operator, as well
as fixed-position encoding in a uniform fashion. In addition,

based on the extracted patterns, we can perform fine-grained
(allele-wise) protection of BBs (like LEGO [14]), depending
on the parents at each crossover (like CDC [15]). By this
feature, overlapping BBs can also be treated naturally in GAP.
Moreover, unlike perturbation-based methods, GAP does not
require extra fitness evaluations, and rather, by accelerating the
evolutionary process, the burden of fitness evaluations could be
reduced. Another advantage of GAP is its comprehensibility.
Under Chen et al.’s classification [16], both GAs and GAP are
classified into a unimetric, physical-linkage and distributed-
model approach, so we believe that GAP is still biologically
understandable like GAs (as mentioned above, GAP is an
instance of genetic engineering approach). Furthermore, the
extracted patterns would make it easier to conduct a post-
analysis of what happened in the evolutionary process.

The rest of this paper is organized as follows. In Section II,
we describe GAP. In particular, Section II-A and Section II-B
respectively describe how GAP incorporates a pattern mining
technique, and how BBs are protected in crossover. The
experimental results are shown in Section III, and finally we
mention the related work in Section IV and conclude the paper
in Section V.

II. GENETIC ALGORITHM WITH PATTERNS

Fig. 1 roughly outlines the GAP framework. GAP basically
follows the standard GA, except that Step 2b and Step 3
are augmented to extract the patterns Π frequently appearing
in “good” chromosomes, and that crossover is performed
adaptively to Π. Π is extracted from a population ∆mine with
very high fitness while ∆sel is obtained as in the standard GA
(∆mine ⊆ ∆sel). Now patterns Π can be seen as induced BBs.
Currently we adopt a generational replacement strategy with
truncation selection and do not change the mutation operation.
Step 3 is called the mining step and the protection procedure
of BBs in the crossover in Step 4 is called the protection step.
In the next two subsections, we describe the details of the
mining step and the protection step, in turn.

A. Finding frequent closed sequence patterns

1) Frequent patterns as induced building blocks: To imple-
ment the mining step, we currently adopt an algorithm called
BIDE [17], an extension of a well-known mining algorithm
PrefixSpan [18], to find the building blocks efficiently. BIDE
enumerates all frequent closed subsequences in a set ∆ of



1) Initialize the population as ∆(0) and let t := 0.
2) From ∆(t), obtain the following two sets of chromo-

somes by truncation selection:
a) ∆sel with truncation rate rsel,
b) ∆mine with truncation rate rmine (rmine ≤ rsel).

3) Extract patterns Π from ∆mine.
4) To ∆sel, apply a crossover based on Π and a mutation,

and then obtain a new population ∆(t+1).
5) Let t := t+ 1.
6) If some termination condition is met, then stop; other-

wise go to Step 2.

Fig. 1. Outline of the GAP framework.

sequences in a depth-first fashion. In the context of GAP, ∆
corresponds to a population and each sequence in ∆ corre-
sponds to a chromosome. Now we define some terminology
and notation. Given a sequence s = 〈α1, α2, . . . , αn〉, a subse-
quence s′ of s is a sequence 〈β1, β2, . . . , βm〉 where there exist
some i1, i2, . . . , im such that 1 ≤ i1 < i2 < · · · < im ≤ n and
β1 = αi1 , β2 = αi2 , . . . , βm = αim (m > 0)1. For example,
〈a〉, 〈b〉, 〈c〉, 〈a, b〉, 〈a, c〉, 〈c, b〉 and 〈a, c, b〉 are subsequences
of 〈a, c, b〉. If s′ is a subsequence of s, we say “s′ occurs in
s” and denote it by s′ ⊆ s. On the other hand, s is called a
supersequence of s′. If s′ ⊆ s but s′ 6= s, we write s′ ⊂ s.

For permutation encoding, a chromosome can be sim-
ply a sequence of alleles, and for fixed-position encoding,
following the encoding scheme in messy GA and LLGA,
we represent a chromosome as a sequence of locus-allele
pairs in which a locus-allele pair (l, a) precedes another
pair (l′, a′) in the sequence when l < l′. For example,
while a permutation 〈a, c, d, e, b〉 is treated as it is, a binary-
encoded chromosome 〈1, 0, 1, 1, 0〉 is translated into a se-
quence 〈(1, 1), (2, 0), (3, 1), (4, 1), (5, 0)〉.

Furthermore, let s be a sequence called a pattern. Also
let σ(s,∆) be the number of sequences in ∆ which are
supersequences of s. Then, σ(s,∆) is called the support of s in
∆, and given a population ∆ and some threshold σmin > 0,
a pattern s is said to be frequent if σ(s,∆) ≥ σmin, i.e. it
occurs in ∆ for at least σmin times. σmin is called the minimum
support. If the context is clear, σ(s,∆) is abbreviated as σ(s).
If ∆(= ∆mine) is a set of significantly “good” chromosomes
and σmin is sufficiently high, frequent patterns can be regarded
as building blocks. Besides, from the above definition, a
pattern is allowed to have gaps. For example, a permutation
〈a, c, d, e, b〉 can match with patterns like 〈a, c〉 or 〈a, d〉,
and a translated sequence of a fixed-position chromosome
〈(1, 1), (2, 0), (3, 1), (4, 1), (5, 0)〉 can match with a pattern
〈(2, 0), (5, 0)〉, which corresponds to 〈∗, 0, ∗, ∗, 0〉 in schema
notation. Thus we can have flexible patterns for both fixed-
position encoding and permutation encoding.

1Although αj ’s and βj ’s are sets of objects (called items) in the original
description on BIDE, we only consider a simpler case.

2) Use of closed patterns: As mentioned above, BIDE has
the ability of finding frequent patterns which are closed. A
closed subsequence s is a subsequence whose proper superse-
quences s′ of s are less frequent than s (i.e. σ(s′) < σ(s)).
In other words, a sequence s is not closed if there is a proper
supersequence s′ of s such that σ(s′) = σ(s).

Closed patterns fit to our purpose since they are the most
informative among the patterns with the same occurrences. In
addition, in the context of GAP, it is important to note that
the mining process of closed patterns is efficient even for the
population with long and similar chromosomes. To see this,
let us suppose that a whole chromosome 〈a, b, c, d, e〉 occurs
for more than σmin times in the population (i.e. 〈a, b, c, d, e〉 is
frequent). Then, all of its subsequences (〈a〉, 〈a, b〉, 〈a, c〉, and
so on) are also frequent. We therefore can have exponentially
more frequent patterns than chromosomes. On the other hand,
we would only have a reasonable number of frequent closed
patterns since any proper subsequence s of 〈a, b, c, d, e〉 are
not closed unless σ(s) > σ(〈a, b, c, d, e〉). Furthermore, BIDE
performs a dynamic checking of the closedness of the pattern
candidates, which enables an aggressive (but safe) pruning
of the search space. At a later stage of the evolution, the
chromosomes tend to be similar to each other, so the use of
closed patterns seems indispensable in GAP.

3) Constraints in chromosomes and patterns: BIDE can
use two types of constraints to make a further optimization.
The first one comes from the encoding we use. For instance,
for both permutation encoding and fixed-position encoding, we
know that every pattern occurs exactly once in a chromosome.
Furthermore, for fixed-position encoding, a locus-allele pair
(l, a) should not occur after (l′, a′) when l < l′, and there is
no locus-allele pair between (l, a) and (l + 1, a′). Exploiting
these constraints, BIDE was modified to skip some routine
for closedness checking. The second type is the constraints
on patterns, which are defined by the user depending on
the nature of the optimization problem. Currently we can
specify four constraints: minimum length Lmin, maximum
length Lmax, minimum gap width Gmin, maximum gap width
Gmax. The last three constraints can contribute to the speedup
of BIDE. To correctly handle these constraints, we made a
slight modification of the routine for closedness checking in
BIDE (details are omitted). For example, it seems always
reasonable to specify Lmin = 2, and we would have local
patterns in permutation by specifying Gmax = 1 or 2.

4) Mining top-K patterns: It is known well that the number
of frequent patterns to find is quite sensitive to the setting of
the minimum support σmin. However, it is not easy to find an
appropriate σmin and adjust it manually in the middle of the
evolution. That is, too small σmin will cause a flood of frequent
patterns, whereas with too large σmin, we can find nothing.
So we adopt a simple top-K pattern mining technique, called
minimum-support raising [19], which only returns to us only
the most frequent K patterns by automatically adjusting σmin.
That is, we start the search with very low minimum support
σ
(0)
min (i.e. σmin := σ

(0)
min), and once we have obtained K

candidate patterns during the search, we update σmin := σ(s)



where s is the least frequent pattern in these top-K candidates.
We repeatedly make this updating every time a new pattern is
added to the list of top-K candidates, and then the minimum
support will be raised. Hereafter, σ

(0)
min is referred to as the

initial minimum support.
In many cases, the minimum support is quickly raised, so

the overhead due to the top-K mining seems not so high, and
would be canceled by the merit that it is much easier for the
user to specify a pair of K and σ

(0)
min, than to specify σmin.

Also we can see that, when combined with BIDE, minimum-
support raising is safe. This is because, as mentioned before,
BIDE performs a dynamic checking of the closedness, and
there are no non-closed patterns in the list of top-K candidates.

B. Soft protection of induced building blocks against un-
wanted crossover

Once we have induced the BBs from the population of
significantly “good” chromosomes, the next problem is how
to transfer the induced BBs to the next generation, combining
them appropriately. To realize this, in the protection step,
we modify the probability distribution over crossover points
based on the positions of such induced BBs in two parent
chromosomes. This soft approach is taken because the induced
BBs may not be correct especially at an early stage of the
evolution. Our crossover operator resembles CDC (context-
dependent crossover) [15] in that the probability distribution
over crossover points is decided at every crossover, depending
on the alleles in the parent chromosomes. By this mechanism,
like CDC, we can naturally deal with overlapping building
blocks.

The rest of this section describes how to modify the
distribution in each of single-point crossover (1PTX, for
short in this paper), two-point crossover (2PTX), the original
edge recombination (ER) and the position-based crossover
(PX) [20]. For simplicity, we take a common approach to
these crossover operators: we first discount the probability
mass from unwanted crossover points, and re-distribute the
discounted probability mass to the other (preferred) crossover
points. This approach is similar to the strategy taken in Sebag
and Schoenauer’s crossover control [21].

Before starting, let us add some notation. Suppose that we
are given π = 〈β1, β2, . . . , βm〉, a pattern or an induced BB
obtained in the mining step. When π occurs in a chromosome
c (π ⊆ c), Occ(π, c) indicates a set of loci governed by π
in the chromosome c. That is, when c = 〈α1, α2, . . . , αn〉
and β1 = αi1 , β1 = αi1 , . . . , βm = αim holds, we have
Occ(π, c) = {i1, i2, . . . , im}. For example, for π = 〈b, d〉 and
c = 〈a, b, c, d〉, we have Occ(π, c) = {2, 4}.

1) Soft protection in single-point crossover: Let us first
consider the case of 1PTX, where two parent chromosomes
c1 and c2 of length n are given. Then, we have N = (n− 1)
crossover points {φ1, φ2, . . . , φN}, where φi is the crossover
point between the i-th and the (i + 1)-th loci in the parents.
Also we write pi as the probability of φi being chosen, and
consider {pi | 1 ≤ i ≤ N} as a probability distribution over
the crossover points {φi | 1 ≤ i ≤ N}.
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Fig. 2. Soft protection in single-point crossover.

Now suppose that we have obtained K patterns Π =
{π1, π2, . . . , πK} in the mining step. If none of these patterns
occur in the parent chromosomes, then we perform 1PTX as
usual, i.e. where the probabilities are unchanged as uniform
(pi = 1/N ). Also if Π covers all positions of one parent
chromosome, the crossover is entirely skipped. Otherwise,
we make a soft protection as follows. First, for each parent
chromosome cu (u = 1, 2), the leftmost position i

(u)
left and

the rightmost position i
(u)
right of these patterns is computed as

i
(u)
left = minOcc(Π, cu) and i

(u)
right = maxOcc(Π, cu), where

Occ(Π, c) =
∪

1≤k≤K:πk⊆c

Occ(πk, c). (1)

Here we would like to protect the portion from the i
(u)
left-th

locus to the i
(u)
right-th locus. To do this, letting Φ = {φi |

i
(1)
left ≤ i < i

(1)
right} ∪ {φi | i(2)left ≤ i < i

(2)
right}, we first discount

the probabilities for the crossover points in Φ as follows:

pi :=
δ

N
(φi ∈ Φ), (2)

where δ (0 < δ < 1) is a user-defined control parameter
called the discount rate. Then, the discounted probability mass
h(1− δ)/N is re-distributed as follows:

pi :=
1

N
+

1

N − h
· h(1− δ)

N
=

N − hδ

N(N − h)
(φi 6∈ Φ), (3)

where h = |Φ| is the number of protected crossover points.
As an illustration, let us suppose that we have two parent

chromosomes c1 and c2 of length 10 in Figure 2. We also have
nine crossover points indexed from 1 to 9 between loci (N =
9). Each of the black-colored bits indicates that one of the
patterns in Π occurs at the position, and these black-colored
bits in c1 (resp. c2) correspond to Occ(Π, c1) = {2, 6, 7} (resp.
Occ(Π, c2) = {1, 2, 3, 7, 8}). On the other hand, the shaded
bits indicate a gap between such black-colored bits. From the
definition, we have i

(1)
left = min{2, 6, 7} = 2, i

(1)
right = 7,

i
(2)
left = 1 and i

(2)
right = 8. Hence, as shown in Figure 2,

we obtain Φ = {φ1, φ2, . . . , φ7} as the set of indices of
crossover points whose probabilities will be discounted. Also
we have h = |Φ| = 7. Finally, given some δ (e.g. δ = 0.5),
the distribution {p1, p2, . . . , p9} over the crossover points are
modified following Eqs. 2 and 3.

One may see that the shaded bits in Figure 2 are protected
together with the black bits, while they are not included in the
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Fig. 3. Soft protection in two-point crossover.

induced BB. So the soft protection in 1PTX has a problem
that the patterns (the induced BBs) could be over-protected,
and this problem will be solved in 2PTX, as described next.

2) Soft protection in two-point crossover: In the case of
2PTX for two parent chromosomes c1 and c2 of length n, we
have N = n(n+1)/2 crossover points {φij | 0 ≤ i < j ≤ n},
where φij indicates that we swap the portion from the (i+1)-
th locus to the j-th locus. Here, for brevity, we describe
the protection method for 2PTX only by illustration. That
is, Figure 3 depicts how the indices of the crossover points
are given for two parent chromosomes c1 and c2 (length n =
10), and shows that the loci to be protected are Occ(Π, c1) ∪
Occ(Π, c2) = {2, 6, 7} ∪ {1, 2, 3, 7, 8} = {1, 2, 3, 6, 7, 8}. So
differently from the case of 1PTX, we can swap the bits at
the loci 4 and 5 as well as the loci 9 and 10. Furthermore,
let us introduce Φfull = {φij | 0 ≤ i < j ≤ n} as the set
of all crossover points, Φ1 = {φij | i, j ∈ {3, 4, 5}, i < j}
as the set of crossover points between the protected loci, and
Φ2 = {φij | i, j ∈ {0, 8, 9, 10}, i < j} as the set of crossover
points outside the protected loci. Finally, we get the set Φ of
the crossover points to be protected by Φ = Φfull \ (Φ1 ∪Φ2).
Then, the probability distribution {pij | 0 ≤ i < j ≤ n} over
the crossover points is modified similarly to the case of 1PTX:

pij :=
δ

N
(φij ∈ Φ) (4)

pij :=
N − hδ

N(N − h)
(φij 6∈ Φ) (5)

where δ is the discount rate and h = |Φ| as defined above. It is
not difficult to generalize the above procedure for computing
Φ. Comparing Fig. 2 and Fig. 3, we can easily see that the
protected part is kept minimal in the case with 2PTX.

3) Soft protection in edge recombination: Edge recombina-
tion is used as a crossover operator for permutation encoding.
Here we consider parent chromosomes of length n with
permutation encoding, where each of {1, 2, . . . , n} appears
exactly once as an allele in a chromosome, e.g. we have
〈2, 4, 3, 1, 5, 6〉 as a chromosome of length 6. Hereafter, in
consideration of traveling salesman problems, we regard each
allele as a city. In ER, for a pair of parent chromosomes, we
first build a table called a edge map that records the cites con-
nected to each city. M [γ] denotes the set of cities connected to
a city γ, and is called a edge list of γ. For example, following
[20], let us consider two parent chromosomes 〈1, 2, 3, 4, 5, 6〉

1) Choose the initial city from one of two parent chromo-
somes. Let γ be this initial city, t := 1 and α1 := γ.

2) Remove γ from M [γ′] (if possible) for all 1 ≤ γ′ ≤ n.
3) If M [γ] 6= ∅ (i.e. there is some edge to another city)

then go to Step 4; otherwise go to Step 5.
4) Choose a city at random from the cities in M [γ] that

have the smallest edge list. Let γ be the chosen city. Go
to Step 6.

5) If t = n (i.e. there is no unvisited city), then return the
offspring 〈α1, α2, . . . , αn〉; otherwise, choose at random
an unvisited city from {1, 2, . . . , n} \ {α1, . . . , αt}. Let
γ be the chosen city. Go to Step 6.

6) t := t+ 1 and then αt := γ. Go to Step 2.

Fig. 4. Edge recombination, which returns an offspring 〈α1, α2, . . . , αn〉.

and 〈2, 4, 3, 1, 5, 6〉. Then, the edge map is built as follows:

City γ Connected cities M [γ]
1 {2, 3, 5, 6}
2 {1, 3, 4, 6}
3 {1, 2, 4}
4 {2, 3, 5}
5 {1, 4, 6}
6 {1, 2, 5}

Using an edge map like above, ER works as shown in Fig. 4,
where 〈α1, α2, . . . , αn〉 is the offspring to be returned. One
may see that there are random choices in Steps 4 and 5, so
we modify the probability distribution for each choice using
the information from the patterns (the induced BBs) Π.

To achieve this, we first build another table M∗ called a
frequent edge map. Now suppose that we have a chromosome
c = 〈α1, α2, . . . , αn〉 in the population ∆. Then, the edges
covered by the patterns Π are obtained by E∗

c = {(αi, αi+1) |
(i, i+ 1) ∈ Occ(Π, c)}, where Occ(Π, c) is defined in Eq. 1.
The edges in E∗

c are called frequent edges in c. Finally we
obtain the list of frequent edges including a city γ as M∗[γ] =∪

c∈∆{γ′ | (γ, γ′) ∈ E∗
c or (γ′, γ) ∈ E∗

c }.
After obtaining M∗, we modify the probability distribution

for the choice of the next city in Step 4 and 5. Let γ be the
current city, Γ = {γ1, γ2, . . . , γN} be a set of the candidates
for the next city, and {p1, p2, . . . , pN} are the probability
distribution where we choose γi with probability pi. In the
original edge recombination, we have pi = 1/N . In GAP,
on the other hand, for a city γi ∈ M∗[γ], we discount the
probability of γi not being chosen. That is, we perform:

pi := 1−
(
1− 1

N

)
δ (γi ∈ M∗[γ]) (6)

pi := 1−
(
1− 1

N

)
N − hδ

N − h
(γi 6∈ M∗[γ]) (7)

where δ is the discount rate and h = |M∗[γ]|.
4) Soft protection in position-based crossover: PX is an-

other crossover operator for permutation encoding. Fig. 5
(left) shows how an offspring c′1 is created from two parent
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Fig. 5. Position-based crossover.

chromosomes c1 and c2 (this example is taken from [20]). In
the first step of PX, we choose several loci (shaded in the
figure) in one parent c1, and the chosen cities in these loci are
copied into the offspring, with the positions unchanged. Then,
in the second step, the remaining cities are copied from the
other parent c2, with the order unchanged. We create another
offspring by swapping the roles of c1 and c2.

In GAP, using the information from the patterns Π, we aim
to give a bias to the choice of the loci in the first step. Now let
us consider to choose approximately (n·rpos) loci in the parent
c1, where n is the length of chromosomes and rpos is a new
control parameter called the the position-keeping rate. If we
do not give any bias, this is achieved by choosing each locus
i independently with probability pi = rpos (1 ≤ i ≤ n). On
the other hand, using Occ(Π, c1), a set of loci to be protected,
we modify the probabilities pi as follows:

pi := κ · (1− (1− rpos)δ) (i ∈ Occ(Π, c1)) (8)
pi := κ · rposδ (i 6∈ Occ(Π, c1)) (9)

where κ is adjusted so that we can choose (n · rpos) loci on
average. For example, if we have Occ(Π, c1) = {3, 4, 6, 7},
the black-colored loci in Fig. 5 (right) are the ones to be
protected. In Eq. 8, the probability of the protected locus i
not being chosen is discounted, while in Eq. 9, the probability
of the unprotected locus i being chosen is discounted.

III. EXPERIMENTS

In the comparative experiments, we picked up two kind of
problems: the royal road problems with fixed-position encod-
ing, and the traveling salesman problems with permutation
encoding. The royal road problems were firstly introduced by
Mitchell et al. [2], and for the traveling salesman problems,
Larrañaga et al. provided an elaborate survey which includes
an in-depth empirical comparison with various crossover and
mutation operators, using standard benchmark datasets [20]. In
both types of problems, we basically compare the standard GA
(SGA, for short) and GAP to see whether or how the protection
of the induced BBs can improve the performance. Addition-
ally, for the royal road problems, BOA (Bayesian Optimization
Algorithm) [10], a popular probabilistic model building GA
method based on Bayesian networks, is compared.

A. Royal road problems

A royal road problem is to optimize the fitness function
for a chromosome c, defined as F (c) =

∑
s∈S w(s)σ(s, c),

TABLE I
CONTROL PARAMETERS FOR THE ROYAL ROAD PROBLEMS.

Method Control parameter Value
Crossover rate 0.7

SGA/GAP Mutation rate 0.01
Truncation rate (rsel) 0.5
Max. # of patterns (K) 30
Min. length of patterns (Lmin) 3

GAP Mining rate (rmine) 0.05, 0.1, 0.2
Discount rate (δ) 0.1, 0.3, 0.5, 0.7, 0.9
Initial min. support (σ(0)

min) max{5, (0.2 · rmine|Pop|)}
Truncation rate 0.01, 0.05, 0.1, 0.2

BOA Max. # of parents 1, 2, 5
Pseudo count (C) 0.01, 0.05, 0.1, 0.5, 1

where S is the set of user-defined schemata, w(s) is the weight
of the schema s ∈ S, and σ(s, c) takes 1 if the schema s
occurs in the chromosome c; 0 otherwise. In our comparative
experiments with the royal road problems, we used two fitness
functions under “tight” encoding and “loose” encoding. These
two fitness function commonly have 15 schemata, and the
schemata and their weights are defined in Fig. 6. From this
figure, we can see that the schemata in “tight” encoding are
formed by the neighboring bits, and so the destruction of the
schemata is less likely to occur. On the other hand, in “loose”
encoding, the schemata are easily destroyed by crossover since
the bits in a schema are apart from each other.

We varied the population size, indicated by |Pop|, from
64 to 512, and compared five evolutionary methods: SGA
with 1PTX, SGA with 2PTX, GAP with 1PTX, GAP with
2PTX, and BOA. It is obvious that 1PTX and 2PTX have
high position dependency, so in this experiment, we would
like to observe whether the protection of the induced BB
can alleviate this position dependency.2 In Mitchell et al.’s
experiments, the population size is fixed at 128, and they use
the roulette wheel selection with fitness scaling. On the other
hand, BOA originally uses the truncation selection, and hence
the truncation selection is used for comparison. Furthermore,
both SGA and GAP use uniform mutation. The evolutionary
cycle is repeated until reaching the optimal fitness 256 or 5,000
generations.

The setting of the user-defined control parameters is shown
in Table I. As in Table I, we used more than one value for
some of the control parameters, and the results with the best
parameter values are presented in this paper. In GAP, we
conducted top-K mining with the initial minimum support
max{5, (0.2 · rmine|Pop|)}, which indicates that the patterns
need to appear in at least 20% of ∆mine, the chromosomes
which have been selected for pattern mining (Fig. 1). For
a small population, on the other hand, the initial minimum
support is fixed at 5.

The control parameters of BOA are also shown in Ta-
ble I. The pseudo count C in the table corresponds to a

2Accordingly we did not try the case with uniform crossover and the case
with no crossover operation in this experiment. The comparison including
these cases is left as future work.



s1 = 11111111********************************************************; w(s1) = 8
s2 = ********11111111************************************************; w(s2) = 8
s3 = ****************11111111****************************************; w(s3) = 8
s4 = ************************11111111********************************; w(s4) = 8
s5 = ********************************11111111************************; w(s5) = 8
s6 = ****************************************11111111****************; w(s6) = 8
s7 = ************************************************11111111********; w(s7) = 8
s8 = ********************************************************11111111; w(s8) = 8
s9 = 1111111111111111************************************************; w(s9) = 16
s10 = ****************1111111111111111********************************; w(s10) = 16
s11 = ********************************1111111111111111****************; w(s11) = 16
s12 = ************************************************1111111111111111; w(s12) = 16
s13 = 11111111111111111111111111111111********************************; w(s13) = 32
s14 = ********************************11111111111111111111111111111111; w(s14) = 32
s15 = 1111111111111111111111111111111111111111111111111111111111111111; w(s15) = 64

s1 = 1*******1*******1*******1*******1*******1*******1*******1*******; w(s1) = 8
s2 = *1*******1*******1*******1*******1*******1*******1*******1******; w(s2) = 8
s2 = **1*******1*******1*******1*******1*******1*******1*******1*****; w(s3) = 8
s4 = ***1*******1*******1*******1*******1*******1*******1*******1****; w(s4) = 8
s5 = ****1*******1*******1*******1*******1*******1*******1*******1***; w(s5) = 8
s6 = *****1*******1*******1*******1*******1*******1*******1*******1**; w(s6) = 8
s7 = ******1*******1*******1*******1*******1*******1*******1*******1*; w(s7) = 8
s8 = *******1*******1*******1*******1*******1*******1*******1*******1; w(s8) = 8
s9 = 1***1***1***1***1***1***1***1***1***1***1***1***1***1***1***1***; w(s9) = 16
s10 = *1***1***1***1***1***1***1***1***1***1***1***1***1***1***1***1**; w(s10) = 16
s11 = **1***1***1***1***1***1***1***1***1***1***1***1***1***1***1***1*; w(s11) = 16
s12 = ***1***1***1***1***1***1***1***1***1***1***1***1***1***1***1***1; w(s12) = 16
s13 = 1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*; w(s13) = 32
s14 = *1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1; w(s14) = 32
s15 = 1111111111111111111111111111111111111111111111111111111111111111; w(s15) = 64

Fig. 6. (above) Royal road function with “tight” encoding, and (below) with “loose” encoding.

prior information about the number of chromosomes in the
population, which is denoted by m′(xi, πXi) in the original
paper [10]. In our implementation, the conditional probabilities
are also estimated using this pseudo count.3 Furthermore, we
tried the addition of edges at most 1,000 times until the
acyclicity satisfied, and tried to create at most 100 networks
until the model score (the BD metric) improved. For all
evolutionary methods including BOA, we performed 100 trials
with different seeds of random numbers.

Table II (above) shows the results for the royal road problem
with “tight” encoding. Here, each entry is the average number
of generations to achieve the optimal fitness, with its standard
error. We can see from this table that 2PTX generally works
better than 1PTX, and the performance gets better with a larger
population, as expected. What is not expected is that GAP with
1PTX performs worse than SGA with 1PTX. One possible
reason is that, in GAP with 1PTX, the induced BBs might
have been over-protected by the modification of the probability
distribution over crossover points. On the other hand, with
2PTX, GAP outperforms SGA for all sizes of population. We
can further see that BOA steadily works, but the performance

3To be more specific, we estimated the conditional probabilities by:

p(xi | πXi
) :=

m(xi, πXi
) + C

m(πXi
) + diC

,

where xi is an instantiation of the i-th variable Xi in the Bayesian net-
work, πXi

is an instantiation of the parent variables of Xi, m(xi, πXi
)

is the number of chromosomes satisfying both xi and πXi
, m(πXi

) =∑
xi

m(xi, πXi
), and di is the number of distinct values of Xi.

TABLE II
COMPARATIVE RESULTS FOR TWO ROYAL ROAD PROBLEMS.

Tight SGA GAP BOA
|Pop| 1PTX 2PTX 1PTX 2PTX

64 684.6 ± 36.9 548.4 ± 35.6 624.5 ± 31.4 538.2 ± 27.5 384.9 ± 20.6
128 266.5 ± 16.0 207.5 ± 14.5 284.3 ± 18.8 186.0 ± 13.7 309.8 ± 14.3
256 89.5 ± 7.1 74.4 ± 6.7 132.3 ± 11.2 55.6 ± 4.7 155.8 ± 7.9
512 28.0 ± 3.5 28.9 ± 2.4 49.3 ± 4.9 23.7 ± 0.8 85.4 ± 3.2

Loose SGA GAP BOA
|Pop| 1PTX 2PTX 1PTX 2PTX

64 578.2 ± 26.3 537.3 ± 23.5 577.9 ± 27.5 541.7 ± 26.0 371.0 ± 21.6
128 294.4 ± 13.4 288.6 ± 11.7 325.4 ± 13.6 285.6 ± 12.0 312.2 ± 14.1
256 185.8 ± 7.1 164.4 ± 7.6 208.8 ± 6.5 151.8 ± 6.1 145.5 ± 5.6
512 110.4 ± 4.0 97.9 ± 3.1 135.6 ± 5.3 95.0 ± 3.7 78.8 ± 2.9

improvement with respect to the population size is slower than
that of traditional GA methods including GAP.

Table II (below), on the other hand, shows the results for the
case with “loose” encoding. This table firstly shows that the
performance of traditional GA methods degrades compared to
the case with “tight” encoding, while the performance of BOA
does not change. This is because the performance of 1PTX
and 2PTX heavily depends on the encoding style, while BOA
uniformly treats all positions in a chromosome by its design.
Despite this, with 2PTX, GAP works better than SGA for a
larger population, and is still comparable with BOA. So we
can say that the protection of the induced BBs alleviates the
position dependency of 2PTX at least to some extent. It should



TABLE III
CONTROL PARAMETERS FOR THE TRAVELING SALESMAN PROBLEMS.

Method Control parameter Value
Crossover rate 0.7

SGA/GAP Mutation rate 0.05
Truncation rate (rsel) 0.5
Position-keeping rate (rpos) 0.25 (for PX only)
Max. # of patterns (K) 30
Min. length of patterns (Lmin) 2

GAP Max. gap width (Gmax) 0, 1, 2
Mining rate (rmine) 0.01, 0.05, 0.1
Discount rate (δ) 0.1, 0.3, 0.5, 0.7, 0.9
Initial min. support (σ(0)

min) max{5, (0.2 · rmine|Pop|)}

be also noted that GAP does not work well with a smaller
population, presumably due to the lack of sufficient amount
of chromosomes to induce “correct” BBs.

B. Traveling salesman problems

In comparative experiments with traveling salesman prob-
lems, we use two crossover operators: the original edge recom-
bination (ER) and the position-based crossover (PX), which
are illustrated in [20]. We compared the evolutionary methods
with Grötschels48 and Grötschels120, which are provided
in TSPLIB95.4 Grötschels48 and Grötschels120 respectively
have 48 cities optimally connected by the route of length
5,046, and 120 cities optimally connected by the route of
length 6,942. We varied the population size from 200 to 2000,
and compared four methods: SGA with ER, SGA with PX,
GAP with ER and GAP with PX. Both SGA and GAP use
the truncation selection and the inverse mutation (which is also
described in [20]). The evolutionary cycle is repeated until it
reaches the optimal fitness or there is no change in the best
fitness over the last 50 generations. Table III lists the control
parameters we used. For the traveling salesman problems, we
newly introduced a constraint on the maximum gap width to
extract promising local routes as the induced BBs. Similarly to
the case of the royal road problems, we performed 100 trials
with different seeds of random numbers. In the experiment, we
did not compare GAP with EHBSA (Edge Histogram Based
Sampling Algorithm) [11], a probabilistic model building GA
for permutation encoding, since these methods adopt different
replacement strategies: the original EHBSA adopts a steady-
state strategy while GAP adopts a generational one.

Table IV shows the results for Grötschels48. Each entry in
Table IV (above) is the best fitness averaged over the 100 trials,
and each entry in Table IV (below) is the average number of
generations until termination, under the same setting of control
parameters. From the tables in Table IV, it can be seen that, in
most cases, GAP improves the best fitness and requires a less
number of generations until termination. So in this experiment,
we can say here that GAP successfully accelerated the evolu-
tion. Since the number of fitness evaluations is proportional to
the number of generations, we may expect that GAP reduces

4http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

TABLE IV
COMPARATIVE RESULTS FOR GRÖTSCHELS48.

Fitness SGA GAP
|Pop| ER PX ER PX

200 5441.7 ± 14.3 5665.1 ± 31.6 5462.1 ± 16.0 5663.2 ± 32.2
500 5152.0 ± 5.5 5326.2 ± 21.8 5143.7 ± 5.0 5262.0 ± 14.4

1000 5111.2 ± 4.2 5224.7 ± 12.7 5103.9 ± 4.2 5223.8 ± 11.7
2000 5098.3 ± 2.9 5189.0 ± 9.4 5081.5 ± 2.4 5192.1 ± 8.9
5000 5085.1 ± 2.0 5161.5 ± 4.8 5072.1 ± 1.8 5164.9 ± 6.1

Gens. SGA GAP
|Pop| ER PX ER PX

200 157.8 ± 3.0 318.3 ± 25.7 154.1 ± 2.7 303.0 ± 21.1
500 165.1 ± 2.3 406.2 ± 45.9 163.8 ± 2.7 287.2 ± 12.6

1000 164.6 ± 1.5 358.4 ± 39.8 146.1 ± 2.2 422.5 ± 50.8
2000 166.1 ± 1.9 445.8 ± 55.0 135.8 ± 1.7 489.4 ± 60.9
5000 163.9 ± 1.9 467.5 ± 58.7 148.6 ± 3.0 511.8 ± 65.3

TABLE V
COMPARATIVE RESULTS FOR GRÖTSCHELS120.

Fitness SGA GAP
|Pop| ER PX ER PX

200 9434.5 ± 34.8 9742.3 ± 69.1 9542.3 ± 38.5 9730.2 ± 85.4
500 8411.0 ± 29.1 8075.4 ± 34.2 8432.3 ± 23.1 8071.6 ± 33.6

1000 8258.1 ± 28.9 7733.1 ± 29.2 8254.1 ± 27.9 7694.2 ± 23.7
2000 8148.2 ± 34.8 7579.0 ± 21.1 8103.7 ± 21.6 7570.5 ± 21.9
5000 8012.6 ± 47.7 7489.2 ± 18.2 7805.3 ± 17.4 7477.2 ± 18.0

Gens. SGA GAP
|Pop| ER PX ER PX

200 557.0 ± 8.7 488.2 ± 10.9 544.3 ± 8.9 513.5 ± 21.2
500 874.7 ± 20.1 528.2 ± 17.8 856.9 ± 19.8 490.5 ± 9.2

1000 1039.9 ± 20.8 574.2 ± 31.1 928.9 ± 20.4 553.6 ± 22.9
2000 1275.0 ± 29.4 649.7 ± 40.0 1044.3 ± 18.8 580.5 ± 29.4
5000 1561.8 ± 32.4 827.0 ± 57.4 1183.0 ± 22.6 856.0 ± 61.0

the burden of fitness evaluation. A similar tendency is observed
more clearly in the case of Grötschels120, whose results are
shown in Table V.

IV. RELATED WORK

The methods for pattern-based extraction/protection of BBs
have been largely developed in the field of genetic program-
ming (e.g. [22], [23], [24], [25], [26]), in which the BBs
are often position-independent and the size of a chromosome
can vary. This paper shows that these extraction/protection
techniques can be applied to sequential chromosomes. Opti-
mization problems with variable-length chromosomes can also
be dealt with in GAP.

Gero and Kazakov’s genetic engineering approach was
firstly proposed in [12] and later fully described in [13].
Although the full description shows that their method can
deal with both position-dependent and position-independent
encodings, the treatments for these encodings are rather dif-
ferent. In GAP, on the other hand, extraction and protection
of BBs are performed in a uniform fashion, thanks to frequent
pattern mining techniques. In addition, Gero and Kazakov’s



method sophisticatedly handles a suffix tree to find BBs from
the chromosomes in position-independent encoding, but unlike
in GAP, such BBs must not contain the gaps.

In GA research, machine learning techniques have al-
ready been used in probabilistic modeling GAs and some
of perturbation-based methods (e.g. [8], [9]), and Sebag and
Schoenauer proposed a method for controlling crossover based
on inductive learning [21]. On the other hand, to the best of
our knowledge, GAP is the first attempt to introduce a frequent
pattern mining technique into GAs.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a framework named GAP (GA
with patterns), which can be viewed as a successor of Gero
and Kazakov’s genetic engineering approach. In GAP, we use
an advanced technique for sequential pattern mining (BIDE
with top-K pattern mining) to induce BBs from significantly
“good” chromosomes, and modify the probability distribution
over crossover points to enable a fine-grained (allele-wise)
protection of the induced BBs against unwanted crossover.
GAP can handle permutation encoding as well as fixed-
position encoding, and the experimental results tell us that
GAP can accelerate the evolutionary process and consequently
reduce the number of fitness evaluations.

There is still a room for improvement in GAP. Instead of
frequent pattern mining, it seems promising to adopt a more
advanced pattern mining technique, such as emerging pattern
mining [27]. That is, we extract patterns that frequently appear
in “good” chromosomes but infrequently appear in “bad”
chromosomes. This contrastive criterion filters out unimportant
patterns and would achieve a more precise extraction of BBs.
In addition, although GAP currently performs the mining
step at every generation, it may be more efficient to perform
the mining step only once in several generations, as Sebag
and Schoenauer suggested [21]. Furthermore, in this paper,
we have described GAP using a sequence mining algorithm
for simplicity and ease of implementation. For fixed-position
encoding, on the other hand, a chromosome can be seen as
a set of locus-allele pairs, and hence the mining step would
be more optimized using an advanced itemset mining method
such as LCM [28].
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